亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Unsupervised Laplacian Pyramid Network for Radiometrically Accurate Data Fusion of Hyperspectral and Multispectral Imagery

高光谱成像 多光谱图像 计算机科学 人工智能 模式识别(心理学) 锐化 图像分辨率 多光谱模式识别 数据集 计算机视觉 遥感 地质学
作者
Sihan Huang,David W. Messinger
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-17 被引量:2
标识
DOI:10.1109/tgrs.2022.3168511
摘要

Improving the spatial resolution of hyperspectral images (HSIs) has traditionally been an important topic in the field of remote sensing. Many approaches have been proposed based on various theories, including component substitution, multiresolution analysis, spectral unmixing, Bayesian probability, and tensor representation. However, these methods have some common disadvantages such that their performance degrades dramatically as the up-scale ratio increases, and they have little concern for the per-pixel radiometric accuracy of the sharpened image. Moreover, many learning-based methods have been proposed through decades of innovations, but most of them require a large set of training pairs, which is unpractical for many real problems. To solve these problems, we propose a stable hyperspectral sharpening method based on the Laplacian pyramid and the generative convolutional neural network (CNN), which achieves superior radiometric accuracy of the sharpened data in different up-scale ratios based on one single input pair. First, with a low-resolution HSI (LR-HSI) and high-resolution multispectral image (HR-MSI) pair, the preliminary high-resolution HSI (HR-HSI) is calculated via linear regression. Then, the high-frequency details of the preliminary HR-HSI are estimated via the subtraction between it and the CNN-generated-blurry version. By injecting the details to the output of the generative CNN with the LR-HSI as input, the final HR-HSI is obtained. Nine different state-of-the-art sharpening methods are chosen as our baselines, and three different datasets with different scene content are tested. Furthermore, the target detection method, the adaptive coherence estimator (ACE), is conducted on the reconstructed HR-HSI to evaluate the per-pixel radiometric accuracy. The results demonstrate that the proposed method has the best and the most stable performance in terms of spectral and spatial accuracies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助风止采纳,获得10
5秒前
酷波er应助yupeijin采纳,获得10
9秒前
13秒前
17秒前
风止发布了新的文献求助10
19秒前
21秒前
没有昵称发布了新的文献求助10
24秒前
赘婿应助风止采纳,获得10
30秒前
科研通AI5应助没有昵称采纳,获得10
31秒前
32秒前
852应助顺心的星月采纳,获得10
33秒前
小pppp发布了新的文献求助10
37秒前
刘大喜发布了新的文献求助10
44秒前
小pppp完成签到,获得积分10
46秒前
喵喵发布了新的文献求助230
48秒前
48秒前
50秒前
86400完成签到,获得积分10
1分钟前
1分钟前
香蕉觅云应助zhangyimg采纳,获得10
1分钟前
天天快乐应助Sahar采纳,获得10
1分钟前
1分钟前
1分钟前
uu发布了新的文献求助10
1分钟前
haokeyan发布了新的文献求助10
1分钟前
1分钟前
1分钟前
haokeyan完成签到,获得积分10
1分钟前
Sahar发布了新的文献求助10
1分钟前
竹子完成签到,获得积分10
1分钟前
无花果应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
m(_._)m完成签到 ,获得积分0
1分钟前
内向耷完成签到 ,获得积分20
1分钟前
Sahar完成签到,获得积分10
1分钟前
1分钟前
1分钟前
sukii发布了新的文献求助30
1分钟前
1分钟前
zhangyimg发布了新的文献求助10
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561907
求助须知:如何正确求助?哪些是违规求助? 3135489
关于积分的说明 9412388
捐赠科研通 2835888
什么是DOI,文献DOI怎么找? 1558793
邀请新用户注册赠送积分活动 728452
科研通“疑难数据库(出版商)”最低求助积分说明 716832