已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Unsupervised Laplacian Pyramid Network for Radiometrically Accurate Data Fusion of Hyperspectral and Multispectral Imagery

高光谱成像 多光谱图像 计算机科学 人工智能 模式识别(心理学) 锐化 图像分辨率 多光谱模式识别 数据集 计算机视觉 遥感 地质学
作者
Sihan Huang,David W. Messinger
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-17 被引量:2
标识
DOI:10.1109/tgrs.2022.3168511
摘要

Improving the spatial resolution of hyperspectral images (HSIs) has traditionally been an important topic in the field of remote sensing. Many approaches have been proposed based on various theories, including component substitution, multiresolution analysis, spectral unmixing, Bayesian probability, and tensor representation. However, these methods have some common disadvantages such that their performance degrades dramatically as the up-scale ratio increases, and they have little concern for the per-pixel radiometric accuracy of the sharpened image. Moreover, many learning-based methods have been proposed through decades of innovations, but most of them require a large set of training pairs, which is unpractical for many real problems. To solve these problems, we propose a stable hyperspectral sharpening method based on the Laplacian pyramid and the generative convolutional neural network (CNN), which achieves superior radiometric accuracy of the sharpened data in different up-scale ratios based on one single input pair. First, with a low-resolution HSI (LR-HSI) and high-resolution multispectral image (HR-MSI) pair, the preliminary high-resolution HSI (HR-HSI) is calculated via linear regression. Then, the high-frequency details of the preliminary HR-HSI are estimated via the subtraction between it and the CNN-generated-blurry version. By injecting the details to the output of the generative CNN with the LR-HSI as input, the final HR-HSI is obtained. Nine different state-of-the-art sharpening methods are chosen as our baselines, and three different datasets with different scene content are tested. Furthermore, the target detection method, the adaptive coherence estimator (ACE), is conducted on the reconstructed HR-HSI to evaluate the per-pixel radiometric accuracy. The results demonstrate that the proposed method has the best and the most stable performance in terms of spectral and spatial accuracies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瘦瘦瘦完成签到 ,获得积分10
刚刚
晁子枫完成签到 ,获得积分10
刚刚
粽子完成签到,获得积分10
5秒前
缓慢的灵枫完成签到 ,获得积分10
5秒前
852应助风中的向卉采纳,获得10
8秒前
风中汽车完成签到,获得积分10
8秒前
Chasing完成签到 ,获得积分10
8秒前
11秒前
无花果应助溪年采纳,获得10
11秒前
朴实凡柔发布了新的文献求助10
12秒前
科研浩完成签到 ,获得积分10
15秒前
欧皇发布了新的文献求助50
15秒前
小蘑菇应助小付采纳,获得10
16秒前
科研通AI2S应助乐观的非笑采纳,获得10
16秒前
量子星尘发布了新的文献求助10
17秒前
ru完成签到 ,获得积分10
19秒前
充电宝应助风中的向卉采纳,获得10
20秒前
潇洒小松鼠完成签到,获得积分10
21秒前
生生不息发布了新的文献求助10
23秒前
Jasmine完成签到,获得积分10
23秒前
24秒前
潇洒小松鼠发布了新的文献求助100
25秒前
LYL完成签到,获得积分10
25秒前
不学习的牛蛙完成签到 ,获得积分10
27秒前
甘牡娟完成签到,获得积分10
28秒前
小柚子完成签到 ,获得积分10
29秒前
迷人秋烟应助老仙翁采纳,获得200
30秒前
ZYY完成签到,获得积分10
31秒前
英俊的铭应助坛子采纳,获得10
31秒前
量子星尘发布了新的文献求助10
32秒前
34秒前
余十一完成签到 ,获得积分10
34秒前
34秒前
大眼的平松完成签到,获得积分10
35秒前
chaotianjiao完成签到 ,获得积分10
35秒前
35秒前
礼岁岁完成签到 ,获得积分10
35秒前
36秒前
GGBoy完成签到,获得积分10
36秒前
邓力发布了新的文献求助10
38秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666277
求助须知:如何正确求助?哪些是违规求助? 3225351
关于积分的说明 9762566
捐赠科研通 2935243
什么是DOI,文献DOI怎么找? 1607513
邀请新用户注册赠送积分活动 759242
科研通“疑难数据库(出版商)”最低求助积分说明 735185