Machine Learning Used to Compare the Diagnostic Accuracy of Risk Factors, Clinical Signs and Biomarkers and to Develop a New Prediction Model for Neonatal Early-onset Sepsis

医学 接收机工作特性 新生儿败血症 诊断准确性 临床预测规则 生命体征 预测建模 人口 机器学习 随机森林 降钙素原 儿科 败血症 重症监护医学 人工智能 内科学 外科 环境卫生 计算机科学
作者
Martin Stocker,Imant Daunhawer,Wendy van Herk,Salhab el Helou,Sourabh Dutta,Frank A B A Schuerman,Rita K. van den Tooren-de Groot,Jantien W. Wieringa,Jan Janota,Laura H van der Meer-Kappelle,Rob Moonen,Sintha D. Sie,Esther de Vries,Albertine E. Donker,Urs Zimmerman,Luregn J. Schlapbach,Amerik C. de Mol,Angelique Hoffmann‐Haringsma,Madan Roy,Maren Tomaske
出处
期刊:Pediatric Infectious Disease Journal [Ovid Technologies (Wolters Kluwer)]
卷期号:41 (3): 248-254 被引量:20
标识
DOI:10.1097/inf.0000000000003344
摘要

Current strategies for risk stratification and prediction of neonatal early-onset sepsis (EOS) are inefficient and lack diagnostic performance. The aim of this study was to use machine learning to analyze the diagnostic accuracy of risk factors (RFs), clinical signs and biomarkers and to develop a prediction model for culture-proven EOS. We hypothesized that the contribution to diagnostic accuracy of biomarkers is higher than of RFs or clinical signs.Secondary analysis of the prospective international multicenter NeoPInS study. Neonates born after completed 34 weeks of gestation with antibiotic therapy due to suspected EOS within the first 72 hours of life participated. Primary outcome was defined as predictive performance for culture-proven EOS with variables known at the start of antibiotic therapy. Machine learning was used in form of a random forest classifier.One thousand six hundred eighty-five neonates treated for suspected infection were analyzed. Biomarkers were superior to clinical signs and RFs for prediction of culture-proven EOS. C-reactive protein and white blood cells were most important for the prediction of the culture result. Our full model achieved an area-under-the-receiver-operating-characteristic-curve of 83.41% (±8.8%) and an area-under-the-precision-recall-curve of 28.42% (±11.5%). The predictive performance of the model with RFs alone was comparable with random.Biomarkers have to be considered in algorithms for the management of neonates suspected of EOS. A 2-step approach with a screening tool for all neonates in combination with our model in the preselected population with an increased risk for EOS may have the potential to reduce the start of unnecessary antibiotics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小宇宙完成签到,获得积分10
1秒前
好好学习完成签到 ,获得积分10
2秒前
3秒前
脱壳金蝉完成签到,获得积分10
5秒前
lmx完成签到,获得积分20
5秒前
清风完成签到 ,获得积分10
6秒前
ding应助霍焱采纳,获得10
8秒前
无情静柏完成签到 ,获得积分20
9秒前
12秒前
彭于晏应助风华采纳,获得10
13秒前
xmhxpz完成签到,获得积分10
13秒前
15秒前
Youngen发布了新的文献求助10
16秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
online1881完成签到,获得积分10
19秒前
会飞的鱼完成签到,获得积分10
22秒前
小余同学完成签到 ,获得积分10
23秒前
吉涛发布了新的文献求助10
24秒前
田...完成签到,获得积分10
24秒前
阔达如柏完成签到,获得积分10
25秒前
wy完成签到,获得积分10
26秒前
Ammon完成签到,获得积分10
27秒前
明理小凝完成签到 ,获得积分10
27秒前
大苗完成签到,获得积分10
29秒前
曾经的凌青完成签到 ,获得积分10
30秒前
31秒前
体贴的手链完成签到,获得积分10
31秒前
31秒前
Youngen完成签到,获得积分10
32秒前
小樊爱摸鱼完成签到,获得积分10
32秒前
33秒前
33秒前
33秒前
33秒前
34秒前
34秒前
34秒前
wy应助科研通管家采纳,获得10
34秒前
wy应助科研通管家采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789530
求助须知:如何正确求助?哪些是违规求助? 5720862
关于积分的说明 15474819
捐赠科研通 4917334
什么是DOI,文献DOI怎么找? 2646933
邀请新用户注册赠送积分活动 1594542
关于科研通互助平台的介绍 1549081