Machine Learning Used to Compare the Diagnostic Accuracy of Risk Factors, Clinical Signs and Biomarkers and to Develop a New Prediction Model for Neonatal Early-onset Sepsis

医学 接收机工作特性 新生儿败血症 诊断准确性 临床预测规则 生命体征 预测建模 人口 机器学习 随机森林 降钙素原 儿科 败血症 重症监护医学 人工智能 内科学 外科 环境卫生 计算机科学
作者
Martin Stocker,Imant Daunhawer,Wendy van Herk,Salhab el Helou,Sourabh Dutta,Frank A B A Schuerman,Rita K. van den Tooren-de Groot,Jantien W. Wieringa,Jan Janota,Laura H van der Meer-Kappelle,Rob Moonen,Sintha D. Sie,Esther de Vries,Albertine E. Donker,Urs Zimmerman,Luregn J. Schlapbach,Amerik C. de Mol,Angelique Hoffmann‐Haringsma,Madan Roy,Maren Tomaske
出处
期刊:Pediatric Infectious Disease Journal [Ovid Technologies (Wolters Kluwer)]
卷期号:41 (3): 248-254 被引量:20
标识
DOI:10.1097/inf.0000000000003344
摘要

Current strategies for risk stratification and prediction of neonatal early-onset sepsis (EOS) are inefficient and lack diagnostic performance. The aim of this study was to use machine learning to analyze the diagnostic accuracy of risk factors (RFs), clinical signs and biomarkers and to develop a prediction model for culture-proven EOS. We hypothesized that the contribution to diagnostic accuracy of biomarkers is higher than of RFs or clinical signs.Secondary analysis of the prospective international multicenter NeoPInS study. Neonates born after completed 34 weeks of gestation with antibiotic therapy due to suspected EOS within the first 72 hours of life participated. Primary outcome was defined as predictive performance for culture-proven EOS with variables known at the start of antibiotic therapy. Machine learning was used in form of a random forest classifier.One thousand six hundred eighty-five neonates treated for suspected infection were analyzed. Biomarkers were superior to clinical signs and RFs for prediction of culture-proven EOS. C-reactive protein and white blood cells were most important for the prediction of the culture result. Our full model achieved an area-under-the-receiver-operating-characteristic-curve of 83.41% (±8.8%) and an area-under-the-precision-recall-curve of 28.42% (±11.5%). The predictive performance of the model with RFs alone was comparable with random.Biomarkers have to be considered in algorithms for the management of neonates suspected of EOS. A 2-step approach with a screening tool for all neonates in combination with our model in the preselected population with an increased risk for EOS may have the potential to reduce the start of unnecessary antibiotics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
张一迪发布了新的文献求助10
1秒前
2秒前
2秒前
ff完成签到,获得积分10
2秒前
所所应助缓慢向日葵采纳,获得10
3秒前
文献蚂蚁发布了新的文献求助30
4秒前
玛卡巴卡发布了新的文献求助10
4秒前
酷波er应助chengzi采纳,获得10
4秒前
4秒前
冷静剑鬼完成签到,获得积分10
4秒前
路路完成签到,获得积分10
5秒前
单薄雪柳发布了新的文献求助10
5秒前
考拉完成签到,获得积分10
5秒前
5秒前
CarryLJR完成签到,获得积分10
5秒前
小二郎应助清风徐来采纳,获得20
5秒前
5秒前
合适依秋发布了新的文献求助10
5秒前
小安发布了新的文献求助10
6秒前
6秒前
7秒前
ddd完成签到,获得积分10
7秒前
玄乙完成签到,获得积分10
7秒前
7秒前
惊鸿一面完成签到,获得积分10
7秒前
8秒前
贺贺发布了新的文献求助10
8秒前
8秒前
8秒前
wen完成签到,获得积分20
9秒前
爆米花应助乔乔兔采纳,获得10
9秒前
9秒前
脑洞疼应助呃呃呃呃GG采纳,获得10
9秒前
9秒前
乐观的枕头完成签到,获得积分10
10秒前
小鹿儿发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261422
求助须知:如何正确求助?哪些是违规求助? 4422535
关于积分的说明 13766643
捐赠科研通 4297013
什么是DOI,文献DOI怎么找? 2357641
邀请新用户注册赠送积分活动 1354024
关于科研通互助平台的介绍 1315182