Machine Learning Used to Compare the Diagnostic Accuracy of Risk Factors, Clinical Signs and Biomarkers and to Develop a New Prediction Model for Neonatal Early-onset Sepsis

医学 接收机工作特性 新生儿败血症 诊断准确性 临床预测规则 生命体征 预测建模 人口 机器学习 随机森林 降钙素原 儿科 败血症 重症监护医学 人工智能 内科学 外科 环境卫生 计算机科学
作者
Martin Stocker,Imant Daunhawer,Wendy van Herk,Salhab el Helou,Sourabh Dutta,Frank A B A Schuerman,Rita K. van den Tooren-de Groot,Jantien W. Wieringa,Jan Janota,Laura H van der Meer-Kappelle,Rob Moonen,Sintha D. Sie,Esther de Vries,Albertine E. Donker,Urs Zimmerman,Luregn J. Schlapbach,Amerik C. de Mol,Angelique Hoffmann‐Haringsma,Madan Roy,Maren Tomaske
出处
期刊:Pediatric Infectious Disease Journal [Lippincott Williams & Wilkins]
卷期号:41 (3): 248-254 被引量:20
标识
DOI:10.1097/inf.0000000000003344
摘要

Current strategies for risk stratification and prediction of neonatal early-onset sepsis (EOS) are inefficient and lack diagnostic performance. The aim of this study was to use machine learning to analyze the diagnostic accuracy of risk factors (RFs), clinical signs and biomarkers and to develop a prediction model for culture-proven EOS. We hypothesized that the contribution to diagnostic accuracy of biomarkers is higher than of RFs or clinical signs.Secondary analysis of the prospective international multicenter NeoPInS study. Neonates born after completed 34 weeks of gestation with antibiotic therapy due to suspected EOS within the first 72 hours of life participated. Primary outcome was defined as predictive performance for culture-proven EOS with variables known at the start of antibiotic therapy. Machine learning was used in form of a random forest classifier.One thousand six hundred eighty-five neonates treated for suspected infection were analyzed. Biomarkers were superior to clinical signs and RFs for prediction of culture-proven EOS. C-reactive protein and white blood cells were most important for the prediction of the culture result. Our full model achieved an area-under-the-receiver-operating-characteristic-curve of 83.41% (±8.8%) and an area-under-the-precision-recall-curve of 28.42% (±11.5%). The predictive performance of the model with RFs alone was comparable with random.Biomarkers have to be considered in algorithms for the management of neonates suspected of EOS. A 2-step approach with a screening tool for all neonates in combination with our model in the preselected population with an increased risk for EOS may have the potential to reduce the start of unnecessary antibiotics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
椰子壳发布了新的文献求助10
1秒前
lei发布了新的文献求助10
4秒前
细心映菱发布了新的文献求助10
4秒前
Liu应助读书酱采纳,获得30
7秒前
8秒前
善良傲珊完成签到,获得积分10
9秒前
9秒前
冷HorToo完成签到 ,获得积分10
10秒前
Surge发布了新的文献求助20
11秒前
魔幻大有完成签到 ,获得积分10
12秒前
垃圾桶发布了新的文献求助10
12秒前
12秒前
传奇3应助WXX采纳,获得10
12秒前
13秒前
热心市民小红花应助丢丢采纳,获得10
17秒前
grumpysquirel完成签到,获得积分10
17秒前
啦啦啦发布了新的文献求助10
17秒前
17秒前
道友且慢发布了新的文献求助20
18秒前
天竹子发布了新的文献求助10
18秒前
Longfenzhong完成签到,获得积分10
19秒前
江维维豆奶完成签到 ,获得积分10
21秒前
菜鸟完成签到,获得积分10
22秒前
孳孳为善6387完成签到,获得积分10
23秒前
酷波er应助庾稀采纳,获得10
23秒前
jihenyouai0213完成签到,获得积分10
24秒前
朴实山兰完成签到,获得积分10
26秒前
小蘑菇应助YZF采纳,获得10
29秒前
蓝天白云发布了新的文献求助10
29秒前
自然的士晋完成签到,获得积分20
31秒前
狸狸完成签到,获得积分20
33秒前
JamesPei应助吃猫的鱼采纳,获得10
33秒前
bxyyy应助虚幻龙猫采纳,获得10
35秒前
36秒前
Akim应助天竹子采纳,获得10
37秒前
包容秋荷发布了新的文献求助10
38秒前
无花果应助LUK_采纳,获得10
39秒前
慕青应助Bella采纳,获得30
39秒前
40秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959759
求助须知:如何正确求助?哪些是违规求助? 3506016
关于积分的说明 11127457
捐赠科研通 3237969
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871741
科研通“疑难数据库(出版商)”最低求助积分说明 803019