Machine Learning Used to Compare the Diagnostic Accuracy of Risk Factors, Clinical Signs and Biomarkers and to Develop a New Prediction Model for Neonatal Early-onset Sepsis

医学 接收机工作特性 新生儿败血症 诊断准确性 临床预测规则 生命体征 预测建模 人口 机器学习 随机森林 降钙素原 儿科 败血症 重症监护医学 人工智能 内科学 外科 环境卫生 计算机科学
作者
Martin Stocker,Imant Daunhawer,Wendy van Herk,Michael Vincer,Sourabh Dutta,Frank A B A Schuerman,Rita K. van den Tooren-de Groot,Jantien W. Wieringa,Jan Janota,Laura H van der Meer-Kappelle,Rob Moonen,Sintha D. Sie,Esther de Vries,Albertine E. Donker,Urs Zimmerman,Luregn J. Schlapbach,Amerik C. de Mol,Angelique Hoffmann‐Haringsma,Madan Roy,Maren Tomaske,René F. Kornelisse,Juliette van Gijsel,Frans B. Plötz,Sven Wellmann,Niek B. Achten,Dirk Lehnick,Annemarie M. C. van Rossum,Julia E. Vogt
出处
期刊:Pediatric Infectious Disease Journal [Ovid Technologies (Wolters Kluwer)]
卷期号:41 (3): 248-254 被引量:8
标识
DOI:10.1097/inf.0000000000003344
摘要

Current strategies for risk stratification and prediction of neonatal early-onset sepsis (EOS) are inefficient and lack diagnostic performance. The aim of this study was to use machine learning to analyze the diagnostic accuracy of risk factors (RFs), clinical signs and biomarkers and to develop a prediction model for culture-proven EOS. We hypothesized that the contribution to diagnostic accuracy of biomarkers is higher than of RFs or clinical signs.Secondary analysis of the prospective international multicenter NeoPInS study. Neonates born after completed 34 weeks of gestation with antibiotic therapy due to suspected EOS within the first 72 hours of life participated. Primary outcome was defined as predictive performance for culture-proven EOS with variables known at the start of antibiotic therapy. Machine learning was used in form of a random forest classifier.One thousand six hundred eighty-five neonates treated for suspected infection were analyzed. Biomarkers were superior to clinical signs and RFs for prediction of culture-proven EOS. C-reactive protein and white blood cells were most important for the prediction of the culture result. Our full model achieved an area-under-the-receiver-operating-characteristic-curve of 83.41% (±8.8%) and an area-under-the-precision-recall-curve of 28.42% (±11.5%). The predictive performance of the model with RFs alone was comparable with random.Biomarkers have to be considered in algorithms for the management of neonates suspected of EOS. A 2-step approach with a screening tool for all neonates in combination with our model in the preselected population with an increased risk for EOS may have the potential to reduce the start of unnecessary antibiotics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
流苏发布了新的文献求助50
1秒前
Echo完成签到,获得积分10
1秒前
3秒前
哆啦A梦发布了新的文献求助10
3秒前
3秒前
饱满凝冬发布了新的文献求助10
4秒前
4秒前
Y哦莫哦莫发布了新的文献求助10
5秒前
老隋发布了新的文献求助10
6秒前
kirirto发布了新的文献求助10
6秒前
gdh发布了新的文献求助10
6秒前
7秒前
Michelle发布了新的文献求助10
7秒前
7秒前
梅子酒发布了新的文献求助10
7秒前
义气的元柏完成签到 ,获得积分10
8秒前
脑洞疼应助白华苍松采纳,获得10
8秒前
8秒前
8秒前
8秒前
辛普森发布了新的文献求助10
9秒前
听闻发布了新的文献求助10
9秒前
刘欢发布了新的文献求助10
10秒前
哆啦A梦完成签到,获得积分10
10秒前
云太医完成签到 ,获得积分10
10秒前
小酸奶完成签到,获得积分10
10秒前
11秒前
11秒前
搜集达人应助qyq采纳,获得10
11秒前
二行发布了新的文献求助10
12秒前
大模型应助捣药的小兔采纳,获得10
12秒前
12秒前
Sparks完成签到,获得积分10
13秒前
13秒前
freshman3005发布了新的文献求助10
13秒前
13秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
宽禁带半导体紫外光电探测器 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143963
求助须知:如何正确求助?哪些是违规求助? 2795613
关于积分的说明 7815684
捐赠科研通 2451611
什么是DOI,文献DOI怎么找? 1304572
科研通“疑难数据库(出版商)”最低求助积分说明 627251
版权声明 601419