亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning Used to Compare the Diagnostic Accuracy of Risk Factors, Clinical Signs and Biomarkers and to Develop a New Prediction Model for Neonatal Early-onset Sepsis

医学 接收机工作特性 新生儿败血症 诊断准确性 临床预测规则 生命体征 预测建模 人口 机器学习 随机森林 降钙素原 儿科 败血症 重症监护医学 人工智能 内科学 外科 环境卫生 计算机科学
作者
Martin Stocker,Imant Daunhawer,Wendy van Herk,Salhab el Helou,Sourabh Dutta,Frank A B A Schuerman,Rita K. van den Tooren-de Groot,Jantien W. Wieringa,Jan Janota,Laura H van der Meer-Kappelle,Rob Moonen,Sintha D. Sie,Esther de Vries,Albertine E. Donker,Urs Zimmerman,Luregn J. Schlapbach,Amerik C. de Mol,Angelique Hoffmann‐Haringsma,Madan Roy,Maren Tomaske
出处
期刊:Pediatric Infectious Disease Journal [Ovid Technologies (Wolters Kluwer)]
卷期号:41 (3): 248-254 被引量:20
标识
DOI:10.1097/inf.0000000000003344
摘要

Current strategies for risk stratification and prediction of neonatal early-onset sepsis (EOS) are inefficient and lack diagnostic performance. The aim of this study was to use machine learning to analyze the diagnostic accuracy of risk factors (RFs), clinical signs and biomarkers and to develop a prediction model for culture-proven EOS. We hypothesized that the contribution to diagnostic accuracy of biomarkers is higher than of RFs or clinical signs.Secondary analysis of the prospective international multicenter NeoPInS study. Neonates born after completed 34 weeks of gestation with antibiotic therapy due to suspected EOS within the first 72 hours of life participated. Primary outcome was defined as predictive performance for culture-proven EOS with variables known at the start of antibiotic therapy. Machine learning was used in form of a random forest classifier.One thousand six hundred eighty-five neonates treated for suspected infection were analyzed. Biomarkers were superior to clinical signs and RFs for prediction of culture-proven EOS. C-reactive protein and white blood cells were most important for the prediction of the culture result. Our full model achieved an area-under-the-receiver-operating-characteristic-curve of 83.41% (±8.8%) and an area-under-the-precision-recall-curve of 28.42% (±11.5%). The predictive performance of the model with RFs alone was comparable with random.Biomarkers have to be considered in algorithms for the management of neonates suspected of EOS. A 2-step approach with a screening tool for all neonates in combination with our model in the preselected population with an increased risk for EOS may have the potential to reduce the start of unnecessary antibiotics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
友好小土豆完成签到 ,获得积分10
3秒前
5秒前
6秒前
6秒前
10秒前
xjz发布了新的文献求助10
11秒前
明天更好完成签到 ,获得积分10
11秒前
12秒前
呋喃发布了新的文献求助10
12秒前
李健应助Emma采纳,获得10
12秒前
14秒前
14秒前
sansan完成签到 ,获得积分10
18秒前
大模型应助郝优佳采纳,获得10
21秒前
斯文败类应助呋喃采纳,获得100
26秒前
33秒前
35秒前
hxr完成签到 ,获得积分10
35秒前
小蘑菇应助Dec采纳,获得10
36秒前
江南之南完成签到 ,获得积分10
37秒前
oleskarabach发布了新的文献求助10
37秒前
ZJ完成签到,获得积分10
38秒前
43秒前
45秒前
科研通AI6应助zyq采纳,获得10
47秒前
48秒前
fybd88发布了新的文献求助10
52秒前
54秒前
月亮不营业完成签到 ,获得积分10
1分钟前
1分钟前
悦耳笑蓝完成签到,获得积分10
1分钟前
1分钟前
悦耳笑蓝发布了新的文献求助10
1分钟前
1分钟前
完美世界应助Hhh采纳,获得10
1分钟前
1分钟前
一休完成签到,获得积分10
1分钟前
1分钟前
ZTLlele完成签到 ,获得积分10
1分钟前
所所应助拼搏半梦采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407675
求助须知:如何正确求助?哪些是违规求助? 4525191
关于积分的说明 14101408
捐赠科研通 4439018
什么是DOI,文献DOI怎么找? 2436558
邀请新用户注册赠送积分活动 1428528
关于科研通互助平台的介绍 1406604