Development and validation of a combined nomogram model based on deep learning contrast-enhanced ultrasound and clinical factors to predict preoperative aggressiveness in pancreatic neuroendocrine neoplasms

列线图 医学 接收机工作特性 放射科 逻辑回归 超声波 神经组阅片室 介入放射学 内科学 神经学 精神科
作者
Jingzhi Huang,Xiaohua Xie,Hong Wu,Xiaoer Zhang,Yanling Zheng,Xiaoyan Xie,Yi Wang,Ming Xu
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (11): 7965-7975 被引量:18
标识
DOI:10.1007/s00330-022-08703-9
摘要

This study aimed to develop and validate a combined nomogram model based on deep learning (DL) contrast-enhanced ultrasound (CEUS) and clinical factors to preoperatively predict the aggressiveness of pancreatic neuroendocrine neoplasms (PNENs).In this retrospective study, consecutive patients with histologically proven PNENs underwent CEUS examination at the initial work-up between January 2010 and October 2020. Patients were randomly allocated to the training and test sets. Typical sonographic and enhanced images of PNENs were selected to fine-tune the SE-ResNeXt-50 network. A combined nomogram model was developed by incorporating the DL predictive probability with clinical factors using multivariate logistic regression analysis. The utility of the proposed model was evaluated using receiver operator characteristic, calibration, and decision curve analysis.A total of 104 patients were evaluated, including 80 (mean age ± standard deviation, 47 years ± 12; 56 males) in the training set and 24 (50 years ± 12; 14 males) in the test set. The DL model displayed effective image recognition with an AUC of 0.81 (95%CI: 0.62-1.00) in the test set. The combined nomogram model that incorporated independent clinical risk factors, such as tumor size, arterial enhancement level, and DL predictive probability, showed strong discrimination, with an AUC of 0.85 (95%CI: 0.69-1.00) in the test set with good calibration. Decision curve analysis verified the clinical usefulness of the combined nomogram.The combined nomogram model could serve as a preoperative, noninvasive, and precise evaluation tool to differentiate aggressive and non-aggressive PNENs.• Tumor size (odds ratio [OR], 1.58; p = 0.02), arterial enhancement level (OR, 0.04; p = 0.008), and deep learning predictive probability (OR, 288.46; p < 0.001) independently predicted aggressiveness of pancreatic neuroendocrine neoplasms preoperatively. • The combined model predicted aggressiveness better than the clinical model (AUC: 0.97 vs. 0.87, p = 0.009), achieving AUC values of 0.97 and 0.85 in the training set and the test set, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寒寒发布了新的文献求助10
刚刚
miaomiao123发布了新的文献求助10
1秒前
香蕉觅云应助丢丢在吗采纳,获得10
1秒前
2秒前
medmh发布了新的文献求助10
2秒前
称心的时光完成签到,获得积分10
3秒前
阉太狼完成签到,获得积分10
3秒前
牛肉粒哦发布了新的文献求助10
4秒前
炜博完成签到,获得积分10
4秒前
5秒前
康小姐完成签到,获得积分10
5秒前
5秒前
6秒前
常佳仟完成签到,获得积分10
6秒前
科研通AI5应助寒寒采纳,获得10
6秒前
Z01完成签到,获得积分10
8秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
9秒前
SYLH应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得30
9秒前
9秒前
zz完成签到,获得积分10
10秒前
10秒前
科研通AI5应助丶丶采纳,获得30
11秒前
11秒前
Jilly发布了新的文献求助10
11秒前
11秒前
小马甲应助lidialon采纳,获得10
11秒前
11秒前
清梦完成签到,获得积分10
14秒前
Omni发布了新的文献求助10
15秒前
常佳仟发布了新的文献求助10
15秒前
幸福大白发布了新的文献求助10
15秒前
Bitree完成签到,获得积分20
15秒前
瑜瑜完成签到 ,获得积分10
16秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745114
求助须知:如何正确求助?哪些是违规求助? 3288017
关于积分的说明 10057088
捐赠科研通 3004221
什么是DOI,文献DOI怎么找? 1649626
邀请新用户注册赠送积分活动 785428
科研通“疑难数据库(出版商)”最低求助积分说明 751077