Dynamic Sepsis Prediction for Intensive Care Unit Patients Using XGBoost-Based Model With Novel Time-Dependent Features

计算机科学 人工智能 机器学习 构造(python库) 败血症 重症监护室 生命体征 功能(生物学) 特征(语言学) 数据挖掘 医学 重症监护医学 外科 进化生物学 免疫学 生物 程序设计语言 语言学 哲学
作者
Shuhui Liu,Bo Fu,Wen Wang,Mei Liu,Xin Sun
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (8): 4258-4269 被引量:24
标识
DOI:10.1109/jbhi.2022.3171673
摘要

Sepsis is a systemic inflammatory response caused by pathogens such as bacteria. Because its pathogenesis is not clear, the clinical manifestations of patients vary greatly, and the alarming incidence and mortality pose a great threat to patients and medical systems, especially in the ICU (Intensive Care Unit). The traditional judgment criteria have the problem of low specificity. Artificial intelligence models could greatly improve the accuracy of sepsis prediction and judgment. Based on the XGBoost machine learning framework taking demographic, vital signs, laboratory tests and medical intervention data as input, this paper proposes a novel model for dynamically predicting sepsis and assessing risk. To realize the model, two methods for feature construction are introduced. For the observed time-series data of vital signs and laboratory tests, the time-dependent method performs to construct the time-dependent characteristics after the statistical screening. For the clinical intervention data, the statistical counting method is applied to construct count-dependent characteristics. Moreover, a new objective function is proposed for the XGBoost framework, and the first-order and second-order gradients of the objective function are also given for model training. Compared with the state-of-the-art methods at present, the proposed model has the best performance, with AUROC improved by 5.4% on the MIMIC-III dataset and 2.1% on PhysioNet Challenge 2019 dataset. The data processing and training methods of this model can be conveniently applied in different electronic health record systems and has a wide application prospect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
侦察兵发布了新的文献求助10
刚刚
苏芋完成签到,获得积分10
刚刚
Chen完成签到 ,获得积分10
刚刚
郑zhenglanyou完成签到,获得积分10
2秒前
2秒前
陈陈发布了新的文献求助15
2秒前
天气晴朗完成签到,获得积分10
2秒前
打打应助MT采纳,获得30
2秒前
奋斗的从灵完成签到,获得积分20
2秒前
aoxianghuang完成签到,获得积分10
2秒前
老福贵儿应助任性乘云采纳,获得10
3秒前
4秒前
量子星尘发布了新的文献求助80
4秒前
科目三应助icey采纳,获得10
4秒前
刘海清发布了新的文献求助10
6秒前
温暖的以旋完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
glanceofwind完成签到 ,获得积分10
9秒前
9秒前
9秒前
黎明发布了新的文献求助10
9秒前
9秒前
心灵美的不斜完成签到 ,获得积分10
9秒前
负责的凌波应助狂野恶天采纳,获得20
11秒前
张zhang完成签到,获得积分10
11秒前
MT完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
泥泞发布了新的文献求助10
13秒前
十里八乡有名的俊后生关注了科研通微信公众号
13秒前
Zoeytam发布了新的文献求助30
14秒前
搜集达人应助刘海清采纳,获得10
14秒前
ebby发布了新的文献求助10
15秒前
汉堡包应助奋斗的从灵采纳,获得30
15秒前
LPP完成签到 ,获得积分20
15秒前
momo发布了新的文献求助10
16秒前
小田完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424345
求助须知:如何正确求助?哪些是违规求助? 4538767
关于积分的说明 14163720
捐赠科研通 4455670
什么是DOI,文献DOI怎么找? 2443852
邀请新用户注册赠送积分活动 1434997
关于科研通互助平台的介绍 1412337