Dynamic Sepsis Prediction for Intensive Care Unit Patients Using XGBoost-Based Model With Novel Time-Dependent Features

计算机科学 人工智能 机器学习 构造(python库) 败血症 重症监护室 生命体征 功能(生物学) 数据挖掘 医学 重症监护医学 外科 进化生物学 免疫学 生物 程序设计语言
作者
Shuhui Liu,Bo Fu,Wen Wang,Mei Liu,Xin Sun
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (8): 4258-4269 被引量:10
标识
DOI:10.1109/jbhi.2022.3171673
摘要

Sepsis is a systemic inflammatory response caused by pathogens such as bacteria. Because its pathogenesis is not clear, the clinical manifestations of patients vary greatly, and the alarming incidence and mortality pose a great threat to patients and medical systems, especially in the ICU (Intensive Care Unit). The traditional judgment criteria have the problem of low specificity. Artificial intelligence models could greatly improve the accuracy of sepsis prediction and judgment. Based on the XGBoost machine learning framework taking demographic, vital signs, laboratory tests and medical intervention data as input, this paper proposes a novel model for dynamically predicting sepsis and assessing risk. To realize the model, two methods for feature construction are introduced. For the observed time-series data of vital signs and laboratory tests, the time-dependent method performs to construct the time-dependent characteristics after the statistical screening. For the clinical intervention data, the statistical counting method is applied to construct count-dependent characteristics. Moreover, a new objective function is proposed for the XGBoost framework, and the first-order and second-order gradients of the objective function are also given for model training. Compared with the state-of-the-art methods at present, the proposed model has the best performance, with AUROC improved by 5.4% on the MIMIC-III dataset and 2.1% on PhysioNet Challenge 2019 dataset. The data processing and training methods of this model can be conveniently applied in different electronic health record systems and has a wide application prospect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助xixiz1024采纳,获得10
刚刚
1秒前
1秒前
CrozzMoy完成签到,获得积分10
3秒前
cobo发布了新的文献求助10
3秒前
3秒前
rivalsdd应助完美的海秋采纳,获得10
4秒前
wannna完成签到,获得积分10
5秒前
111发布了新的文献求助10
5秒前
pgg完成签到,获得积分20
5秒前
文静的枫叶完成签到,获得积分10
6秒前
刘蛋完成签到,获得积分10
7秒前
TsutsumiRyuu完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
Sven完成签到,获得积分10
8秒前
清茶完成签到,获得积分10
9秒前
牧无声应助陈强采纳,获得200
10秒前
11秒前
11秒前
12秒前
12秒前
pgg发布了新的文献求助10
13秒前
luckyVicky发布了新的文献求助10
13秒前
小赖皮啦完成签到 ,获得积分10
13秒前
smoli发布了新的文献求助10
14秒前
pppyy完成签到,获得积分10
14秒前
xixiz1024完成签到,获得积分10
15秒前
科研通AI2S应助sanfenzhiyi采纳,获得10
16秒前
kiminonawa应助sanfenzhiyi采纳,获得10
16秒前
16秒前
Orange应助公西香露采纳,获得10
16秒前
pppyy发布了新的文献求助30
17秒前
陈年人少熬夜完成签到 ,获得积分10
17秒前
桐桐应助淡淡友卉采纳,获得10
17秒前
xixiz1024发布了新的文献求助10
17秒前
sunset完成签到,获得积分10
19秒前
cobo完成签到,获得积分10
20秒前
科研通AI2S应助完美的海秋采纳,获得10
22秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3245915
求助须知:如何正确求助?哪些是违规求助? 2889535
关于积分的说明 8258943
捐赠科研通 2557956
什么是DOI,文献DOI怎么找? 1386796
科研通“疑难数据库(出版商)”最低求助积分说明 650340
邀请新用户注册赠送积分活动 626692