昼夜节律
生物
生物发光
荧光素酶
报告基因
视交叉上核
细胞生物学
生物发光成像
生物钟
内分泌学
内科学
基因表达
基因
遗传学
转染
生物化学
医学
作者
Ciearra B. Smith,Vincent van der Vinne,Eleanor McCartney,Adam Stowie,Tanya Leise,Blanca Martin-Burgos,Penny C. Molyneux,Lauren A. Garbutt,Michael H. Brodsky,Alec J. Davidson,Mary E. Harrington,Robert Dallmann,David R. Weaver
标识
DOI:10.1177/07487304211069452
摘要
Circadian rhythms are endogenously generated physiological and molecular rhythms with a cycle length of about 24 h. Bioluminescent reporters have been exceptionally useful for studying circadian rhythms in numerous species. Here, we report development of a reporter mouse generated by modification of a widely expressed and highly rhythmic gene encoding D-site albumin promoter binding protein ( Dbp). In this line of mice, firefly luciferase is expressed from the Dbp locus in a Cre recombinase-dependent manner, allowing assessment of bioluminescence rhythms in specific cellular populations. A mouse line in which luciferase expression was Cre-independent was also generated. The Dbp reporter alleles do not alter Dbp gene expression rhythms in liver or circadian locomotor activity rhythms. In vivo and ex vivo studies show the utility of the reporter alleles for monitoring rhythmicity. Our studies reveal cell-type-specific characteristics of rhythms among neuronal populations within the suprachiasmatic nuclei ex vivo. In vivo studies show Dbp-driven bioluminescence rhythms in the liver of Albumin-Cre;Dbp KI/+ “liver reporter” mice. After a shift of the lighting schedule, locomotor activity achieved the proper phase relationship with the new lighting cycle more rapidly than hepatic bioluminescence did. As previously shown, restricting food access to the daytime altered the phase of hepatic rhythmicity. Our model allowed assessment of the rate of recovery from misalignment once animals were provided with food ad libitum. These studies confirm the previously demonstrated circadian misalignment following environmental perturbations and reveal the utility of this model for minimally invasive, longitudinal monitoring of rhythmicity from specific mouse tissues.
科研通智能强力驱动
Strongly Powered by AbleSci AI