摘要
Abstract The use of nanoparticles as biomaterials with applications in the biomedical field is growing every day. These nanomaterials can be used as contrast imaging agents, combination therapy agents, and targeted delivery systems in medicine and dentistry. Usually, nanoparticles are found as synthetic or natural organic materials, such as hydroxyapatite, polymers, and lipids. Besides that, they are could also be inorganic, for instance, metallic or metal-oxide-based particles. These inorganic nanoparticles could additionally present magnetic properties, such as superparamagnetic iron oxide nanoparticles. The use of nanoparticles as drug delivery agents has many advantages, for they help diminish toxicity effects in the body since the drug dose reduces significantly, increases drugs biocompatibility, and helps target drugs to specific organs. As targeted-delivery agents, one of the applications uses nanoparticles as drug delivery particles for bone-tissue to treat cancer, osteoporosis, bone diseases, and dental treatments such as periodontitis. Their application as drug delivery agents requires a good comprehension of the nanoparticle properties and composition, alongside their synthesis and drug attachment characteristics. Properties such as size, shape, core-shell designs, and magnetic characteristics can influence their behavior inside the human body and modify magnetic properties in the case of magnetic nanoparticles. Based on that, many different studies have modified the synthesis methods for these nanoparticles and developed composite systems for therapeutics delivery, adapting, and improving magnetic properties, shell-core designs, and particle size and nanosystems characteristics. This review presents the most recent studies that have been presented with different nanoparticle types and structures for bone and dental drug delivery.