Automatic extraction of inventive information out of patent texts in support of manufacturing design studies using Natural Languages Processing

特里兹 阅读(过程) 信息抽取 计算机科学 面子(社会学概念) 点(几何) 数据科学 人工智能 语言学 数学 哲学 几何学
作者
Daria Berdyugina,Denis Cavallucci
出处
期刊:Journal of Intelligent Manufacturing [Springer Science+Business Media]
卷期号:34 (5): 2495-2509 被引量:13
标识
DOI:10.1007/s10845-022-01943-y
摘要

Intelligent manufacturing systems are constantly evolving in diversity and complexity. The rise of numeric era, ruled by the keywords industry 4.0 or industry of the future imposes to companies to invent new processes and solve an ever increasing quantity of problems. Paradoxically, even if techniques of inventive problem-solving progress in diversity, their ability to face this world-wide challenge do not grow accordingly. However, thanks to Natural Languages Processing (NLP), actors of invention can now count on information contents as an assistant through its textual data. Patent texts are of particular interest since they are an important and constantly renewed source of inventive information. This situation leads to the difficulty, for scientists and engineers, to permanently manage new masses of information from recent domains well beyond their reading capacity. Our research, based on the combination of the theory of inventive problem-solving (also known as TRIZ) and NLP, has made it possible to extract quickly and in a relevant way from patent texts, concepts that contain information useful for formulating an inventive problem. In this paper, we present our methodology for the automatic extraction of inventive information from patent texts and measure our technique to a classical human-led information gathering. Our results show a significant reduction of experts time solicitation, for an increase of 36% in the extraction of useful information. A case study applied to microplastics harvesting from the ocean illustrates our point.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
思源应助四体不勤采纳,获得10
1秒前
平淡思雁完成签到,获得积分10
2秒前
英俊的铭应助小肥鱼采纳,获得30
3秒前
wanci应助西洲采纳,获得10
3秒前
4秒前
周久完成签到 ,获得积分10
4秒前
yuyuyu完成签到,获得积分10
4秒前
yuM完成签到,获得积分10
4秒前
4秒前
淡漠发布了新的文献求助20
4秒前
开心小猪发布了新的文献求助10
5秒前
smile发布了新的文献求助10
5秒前
6秒前
6秒前
Elaine_fy完成签到,获得积分10
6秒前
derozan发布了新的文献求助30
6秒前
@Hi发布了新的文献求助10
7秒前
CipherSage应助王叮叮采纳,获得10
8秒前
8秒前
冯微微完成签到,获得积分10
8秒前
郭泓嵩完成签到,获得积分10
8秒前
SYLH应助陈椅子的求学采纳,获得10
8秒前
8秒前
蜜雪冰城发布了新的文献求助10
9秒前
小玉发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
10秒前
i黄m发布了新的文献求助20
11秒前
852应助洛丶采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
William鉴哲发布了新的文献求助10
13秒前
woollen2022发布了新的文献求助10
13秒前
Maomao发布了新的文献求助10
13秒前
14秒前
张弛华完成签到,获得积分10
14秒前
搜集达人应助yihuifa采纳,获得10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954099
求助须知:如何正确求助?哪些是违规求助? 3500131
关于积分的说明 11098052
捐赠科研通 3230564
什么是DOI,文献DOI怎么找? 1786012
邀请新用户注册赠送积分活动 869802
科研通“疑难数据库(出版商)”最低求助积分说明 801594