亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic extraction of inventive information out of patent texts in support of manufacturing design studies using Natural Languages Processing

特里兹 阅读(过程) 信息抽取 计算机科学 面子(社会学概念) 点(几何) 数据科学 人工智能 语言学 数学 几何学 哲学
作者
Daria Berdyugina,Denis Cavallucci
出处
期刊:Journal of Intelligent Manufacturing [Springer Nature]
卷期号:34 (5): 2495-2509 被引量:13
标识
DOI:10.1007/s10845-022-01943-y
摘要

Intelligent manufacturing systems are constantly evolving in diversity and complexity. The rise of numeric era, ruled by the keywords industry 4.0 or industry of the future imposes to companies to invent new processes and solve an ever increasing quantity of problems. Paradoxically, even if techniques of inventive problem-solving progress in diversity, their ability to face this world-wide challenge do not grow accordingly. However, thanks to Natural Languages Processing (NLP), actors of invention can now count on information contents as an assistant through its textual data. Patent texts are of particular interest since they are an important and constantly renewed source of inventive information. This situation leads to the difficulty, for scientists and engineers, to permanently manage new masses of information from recent domains well beyond their reading capacity. Our research, based on the combination of the theory of inventive problem-solving (also known as TRIZ) and NLP, has made it possible to extract quickly and in a relevant way from patent texts, concepts that contain information useful for formulating an inventive problem. In this paper, we present our methodology for the automatic extraction of inventive information from patent texts and measure our technique to a classical human-led information gathering. Our results show a significant reduction of experts time solicitation, for an increase of 36% in the extraction of useful information. A case study applied to microplastics harvesting from the ocean illustrates our point.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静念真完成签到,获得积分10
2秒前
3秒前
5秒前
8秒前
10秒前
10秒前
自觉的小蝴蝶完成签到,获得积分10
12秒前
fairy112233完成签到,获得积分20
12秒前
菜鸡5号发布了新的文献求助10
13秒前
沉静念真发布了新的文献求助10
13秒前
醉了完成签到,获得积分10
15秒前
22秒前
HAG完成签到,获得积分10
29秒前
30秒前
思源应助科研通管家采纳,获得10
30秒前
爱静静应助科研通管家采纳,获得10
30秒前
爱静静应助科研通管家采纳,获得10
30秒前
顾矜应助沉静念真采纳,获得30
32秒前
蔓越莓蛋糕完成签到 ,获得积分10
49秒前
端庄闭月完成签到,获得积分20
51秒前
51秒前
53秒前
宁雨歆完成签到,获得积分10
55秒前
8R60d8应助端庄闭月采纳,获得10
57秒前
落后凝莲完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助大大小采纳,获得10
1分钟前
落后凝莲发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
SULAIMAN发布了新的文献求助10
1分钟前
阿尔弗雷德完成签到 ,获得积分10
1分钟前
Hayat发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
amengptsd完成签到,获得积分10
1分钟前
HY发布了新的文献求助10
1分钟前
小脚丫完成签到 ,获得积分10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316864
求助须知:如何正确求助?哪些是违规求助? 2948687
关于积分的说明 8541803
捐赠科研通 2624574
什么是DOI,文献DOI怎么找? 1436326
科研通“疑难数据库(出版商)”最低求助积分说明 665874
邀请新用户注册赠送积分活动 651796