亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Pixelwise asphalt concrete pavement crack detection via deep learning‐based semantic segmentation method

深度学习 卷积神经网络 残余物 分割 人工神经网络 人工智能 像素 计算机科学 模式识别(心理学) 算法
作者
Ju Huyan,Tao Ma,Wei Li,Handuo Yang,Zhengchao Xu
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:29 (8) 被引量:36
标识
DOI:10.1002/stc.2974
摘要

Explicit gaps exist between the advanced deep learning technologies and the less satisfied pixel-level crack detection algorithms. Therefore, this research sought to bridge this gap via outlining the deep neural network model for pixelwise pavement crack detection. Two state-of-the-art deep neural network models are constructed for the semantic segmentation of crack images. The first architecture, VGGCrackU-net, is composed of 10 3 × 3 convolutional layers, 4 max-pooling layers, 4 up-sampling layers, and 4 concatenate operations. Another architecture, ResCrackU-net, is composed of 7-level residual units with a total of 22 convolutional layers. Asphalt concrete pavement crack images are collected by smartphones, action cameras, and automatic pavement monitoring systems from diverse functional classes of AC pavements. The crack images are manually labeled and double-checked by trained operators for quality insurance. After that, 500 crack images are randomly divided into training, validating, and test datasets according to the ratio of 3:1:1. Both architectures are trained on GPU facilitated Keras platform with Python version of 3.5, which demonstrated fast convergence. Results prove that the proposed models exhibit significant advantages for pixelwise crack detection when compared with the performance of widely used FCN net and PSPnet. Meanwhile, ResCrackU-net slightly outperforms VGGCrackU-net, which, however, can provide acceptable results as well. Though significant false negative and false positive errors are observed in both network models, the contributions are noticeable, which can provide innovative guidance for future work in figuring out solutions to the problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
mh完成签到,获得积分10
4秒前
Siqi完成签到,获得积分10
5秒前
7秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
18秒前
xliiii完成签到,获得积分10
20秒前
22秒前
23秒前
神内打工人完成签到 ,获得积分10
28秒前
28秒前
量子星尘发布了新的文献求助10
29秒前
虚心的惮完成签到 ,获得积分10
30秒前
34秒前
Lucas应助zxcv22100采纳,获得10
36秒前
37秒前
39秒前
42秒前
45秒前
余念安完成签到 ,获得积分10
46秒前
46秒前
量子星尘发布了新的文献求助10
48秒前
zxcv22100发布了新的文献求助10
51秒前
54秒前
life完成签到 ,获得积分10
55秒前
56秒前
何三岁发布了新的文献求助10
59秒前
olekravchenko发布了新的文献求助30
1分钟前
1分钟前
1分钟前
1分钟前
FashionBoy应助何三岁采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
何三岁完成签到,获得积分10
1分钟前
1分钟前
peng完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660939
求助须知:如何正确求助?哪些是违规求助? 3222150
关于积分的说明 9743733
捐赠科研通 2931683
什么是DOI,文献DOI怎么找? 1605151
邀请新用户注册赠送积分活动 757705
科研通“疑难数据库(出版商)”最低求助积分说明 734462