Allying with AI? Reactions toward human-based, AI/ML-based, and augmented hiring processes

选择(遗传算法) 心理学 复制 人员选择 过程(计算) 人工智能 社会心理学 应用心理学 计算机科学 管理 统计 数学 操作系统 经济
作者
Manuel F. Gonzalez,Weiwei Liu,Lei Shirase,David L. Tomczak,Carmen E. Lobbe,Richard Justenhoven,Nicholas R. Martin
出处
期刊:Computers in Human Behavior [Elsevier]
卷期号:130: 107179-107179 被引量:50
标识
DOI:10.1016/j.chb.2022.107179
摘要

While many organizations' hiring practices now incorporate artificial intelligence (AI) and machine learning (ML), research suggests that job applicants may react negatively toward AI/ML-based selection practices. In the current research, we thus examined how organizations might mitigate adverse reactions toward AI/ML-based selection processes. In two between-subjects experiments, we recruited online samples of participants (undergraduate students and Prolific panelists, respectively) and presented them with vignettes representing various selection systems and measured participants' reactions to them. In Study 1, we manipulated (a) whether the system was managed by a human decision-maker, by AI/ML, or a combination of both (an “augmented” approach), and (b) the selection stage (screening, final stage). Results indicated that participants generally reacted more favorably toward augmented and human-based approaches, relative to AI/ML-based approaches, and further depended on participants' pre-existing familiarity levels with AI. In Study 2, we sought to replicate our findings within a specific process (selecting hotel managers) and application method (handling interview recordings). We found again that reactions toward the augmented approach generally depended on participants’ familiarity levels with AI. Our findings have implications for how (and for whom) organizations should implement AI/ML-based practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文香彤完成签到,获得积分10
刚刚
刚刚
2秒前
2秒前
海上溜冰发布了新的文献求助10
4秒前
不配.应助安静的明辉采纳,获得20
5秒前
削菠萝发布了新的文献求助10
5秒前
6秒前
6秒前
自觉枫发布了新的文献求助10
7秒前
7秒前
112233发布了新的文献求助10
7秒前
7秒前
汉堡包应助limin采纳,获得10
8秒前
8秒前
文闵完成签到,获得积分0
8秒前
轨迹发布了新的文献求助10
8秒前
斯文败类应助体面人采纳,获得200
9秒前
12秒前
陈陈发布了新的文献求助50
12秒前
月初发布了新的文献求助10
12秒前
Ava应助烂漫的猕猴桃采纳,获得10
13秒前
板砖小中医完成签到 ,获得积分10
13秒前
酷酷酷完成签到,获得积分10
13秒前
马德里就思议完成签到,获得积分10
14秒前
16秒前
16秒前
17秒前
小巧的雨柏完成签到,获得积分20
18秒前
钱财实景发布了新的文献求助30
19秒前
serendipity完成签到 ,获得积分10
19秒前
思源应助112233采纳,获得10
19秒前
欣喜小甜瓜完成签到,获得积分10
20秒前
Carrots发布了新的文献求助10
20秒前
20秒前
马路发布了新的文献求助10
21秒前
科研民工发布了新的文献求助10
22秒前
情怀应助spark317采纳,获得10
22秒前
23秒前
24秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138178
求助须知:如何正确求助?哪些是违规求助? 2789056
关于积分的说明 7790034
捐赠科研通 2445505
什么是DOI,文献DOI怎么找? 1300440
科研通“疑难数据库(出版商)”最低求助积分说明 625925
版权声明 601046