Prediction of Upstaging in Ductal Carcinoma in Situ Based on Mammographic Radiomic Features

医学 导管癌 放射科 活检 乳腺摄影术 乳腺癌 逻辑回归 乳房成像 癌症 内科学
作者
Rui Hou,Lars J. Grimm,Maciej A. Mazurowski,Jeffrey R. Marks,Lorraine King,Carlo C. Maley,Thomas Lynch,Marja van Oirsouw,Keith D. Rogers,Nicholas Stone,Matthew Wallis,Jonas Teuwen,Jelle Wesseling,E. Shelley Hwang,Joseph Y. Lo
出处
期刊:Radiology [Radiological Society of North America]
卷期号:303 (1): 54-62 被引量:22
标识
DOI:10.1148/radiol.210407
摘要

Background Improving diagnosis of ductal carcinoma in situ (DCIS) before surgery is important in choosing optimal patient management strategies. However, patients may harbor occult invasive disease not detected until definitive surgery. Purpose To assess the performance and clinical utility of mammographic radiomic features in the prediction of occult invasive cancer among women diagnosed with DCIS on the basis of core biopsy findings. Materials and Methods In this Health Insurance Portability and Accountability Act-compliant retrospective study, digital magnification mammographic images were collected from women who underwent breast core-needle biopsy for calcifications that was performed at a single institution between September 2008 and April 2017 and yielded a diagnosis of DCIS. The database query was directed at asymptomatic women with calcifications without a mass, architectural distortion, asymmetric density, or palpable disease. Logistic regression with regularization was used. Differences across training and internal test set by upstaging rate, age, lesion size, and estrogen and progesterone receptor status were assessed by using the Kruskal-Wallis or χ2 test. Results The study consisted of 700 women with DCIS (age range, 40-89 years; mean age, 59 years ± 10 [standard deviation]), including 114 with lesions (16.3%) upstaged to invasive cancer at subsequent surgery. The sample was split randomly into 400 women for the training set and 300 for the testing set (mean ages: training set, 59 years ± 10; test set, 59 years ± 10; P = .85). A total of 109 radiomic and four clinical features were extracted. The best model on the test set by using all radiomic and clinical features helped predict upstaging with an area under the receiver operating characteristic curve of 0.71 (95% CI: 0.62, 0.79). For a fixed high sensitivity (90%), the model yielded a specificity of 22%, a negative predictive value of 92%, and an odds ratio of 2.4 (95% CI: 1.8, 3.2). High specificity (90%) corresponded to a sensitivity of 37%, positive predictive value of 41%, and odds ratio of 5.0 (95% CI: 2.8, 9.0). Conclusion Machine learning models that use radiomic features applied to mammographic calcifications may help predict upstaging of ductal carcinoma in situ, which can refine clinical decision making and treatment planning. © RSNA, 2022.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
meta完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
斯文可仁完成签到,获得积分10
3秒前
4秒前
4秒前
NexusExplorer应助Juneaper采纳,获得10
4秒前
敏感的归头完成签到,获得积分10
4秒前
4秒前
4秒前
fanyuhong完成签到 ,获得积分10
5秒前
jackhlj发布了新的文献求助10
5秒前
Jovid发布了新的文献求助10
7秒前
香蕉觅云应助ziux采纳,获得10
8秒前
苏卿应助眼睛大鸭子采纳,获得10
9秒前
snoopy448发布了新的文献求助10
9秒前
Marksman497完成签到,获得积分10
9秒前
英姑应助开花的五花肉采纳,获得10
10秒前
pskgg完成签到,获得积分10
10秒前
gujiamin完成签到,获得积分10
10秒前
10秒前
KY Mr.WANG完成签到,获得积分10
11秒前
banana95完成签到 ,获得积分10
11秒前
accept完成签到,获得积分10
12秒前
Marksman497发布了新的文献求助10
12秒前
12秒前
Jasper应助Mia采纳,获得10
12秒前
jackhlj完成签到,获得积分10
13秒前
huanhuan发布了新的文献求助10
13秒前
宇文数学完成签到 ,获得积分10
15秒前
15秒前
oyxz发布了新的文献求助10
16秒前
暮夏七发布了新的文献求助10
16秒前
Owen应助zhouleiwang采纳,获得10
18秒前
19秒前
没烦恼发布了新的文献求助10
19秒前
20秒前
XIAOMUMU发布了新的文献求助10
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156078
求助须知:如何正确求助?哪些是违规求助? 2807458
关于积分的说明 7873196
捐赠科研通 2465782
什么是DOI,文献DOI怎么找? 1312412
科研通“疑难数据库(出版商)”最低求助积分说明 630102
版权声明 601905