已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Using machine learning and an electronic tongue for discriminating saliva samples from oral cavity cancer patients and healthy individuals

支持向量机 随机森林 人工智能 舌头 电子舌 唾液 机器学习 癌症 模式识别(心理学) 化学 计算机科学 病理 内科学 医学 生物化学 食品科学 品味
作者
Daniel Cesar Braz,Mário Popolin Neto,Flávio M. Shimizu,Acelino Cardoso de Sá,Renato S. Lima,Ângelo L. Gobbi,Matias Eliseo Melendez,Lídia Maria Rebolho Batista Arantes,André Lopes Carvalho,Fernando V. Paulovich,Osvaldo N. Oliveira
出处
期刊:Talanta [Elsevier]
卷期号:243: 123327-123327 被引量:30
标识
DOI:10.1016/j.talanta.2022.123327
摘要

The diagnosis of cancer and other diseases using data from non-specific sensors - such as the electronic tongues (e-tongues) - is challenging owing to the lack of selectivity, in addition to the variability of biological samples. In this study, we demonstrate that impedance data obtained with an e-tongue in saliva samples can be used to diagnose cancer in the mouth. Data taken with a single-response microfluidic e-tongue applied to the saliva of 27 individuals were treated with multidimensional projection techniques and non-supervised and supervised machine learning algorithms. The distinction between healthy individuals and patients with cancer on the floor of mouth or oral cavity could only be made with supervised learning. Accuracy above 80% was obtained for the binary classification (YES or NO for cancer) using a Support Vector Machine (SVM) with radial basis function kernel and Random Forest. In the classification considering the type of cancer, the accuracy dropped to ca. 70%. The accuracy tended to increase when clinical information such as alcohol consumption was used in conjunction with the e-tongue data. With the random forest algorithm, the rules to explain the diagnosis could be identified using the concept of Multidimensional Calibration Space. Since the training of the machine learning algorithms is believed to be more efficient when the data of a larger number of patients are employed, the approach presented here is promising for computer-assisted diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang发布了新的文献求助10
2秒前
ASD完成签到,获得积分10
2秒前
4秒前
valere完成签到 ,获得积分10
4秒前
Flash完成签到 ,获得积分10
9秒前
科研扫地僧完成签到,获得积分10
10秒前
11秒前
14秒前
慕青应助酷炫紫萍采纳,获得10
15秒前
徐曼发布了新的文献求助10
17秒前
19秒前
Xu完成签到 ,获得积分10
20秒前
吖牙发布了新的文献求助10
21秒前
21秒前
韩较瘦完成签到,获得积分10
22秒前
黄垚发布了新的文献求助10
24秒前
25秒前
26秒前
28秒前
30秒前
慧子完成签到,获得积分10
31秒前
iNk应助彩色的花瓣采纳,获得10
32秒前
32秒前
科目三应助咕噜咕噜采纳,获得10
34秒前
胜胜糖完成签到 ,获得积分10
34秒前
HuLL发布了新的文献求助10
34秒前
Jessica完成签到,获得积分10
35秒前
36秒前
Ava应助科研通管家采纳,获得10
36秒前
共享精神应助科研通管家采纳,获得10
36秒前
NexusExplorer应助科研通管家采纳,获得10
36秒前
07应助科研通管家采纳,获得30
36秒前
36秒前
36秒前
希望天下0贩的0应助徐曼采纳,获得10
37秒前
38秒前
38秒前
40秒前
万能图书馆应助武巧运采纳,获得10
41秒前
zzl发布了新的文献求助10
42秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310962
求助须知:如何正确求助?哪些是违规求助? 2943713
关于积分的说明 8516191
捐赠科研通 2619029
什么是DOI,文献DOI怎么找? 1431813
科研通“疑难数据库(出版商)”最低求助积分说明 664484
邀请新用户注册赠送积分活动 649752