Resolvent-based tools for optimal estimation and control via the Wiener–Hopf formalism

解算器 计算机科学 应用数学 正压流体 解决方案 控制理论(社会学) 数学优化 数学 数学分析 物理 控制(管理) 人工智能 机械
作者
Eduardo Martini,Junoh Jung,André V. G. Cavalieri,Peter Jordan,Aaron Towne
出处
期刊:Journal of Fluid Mechanics [Cambridge University Press]
卷期号:937 被引量:21
标识
DOI:10.1017/jfm.2022.102
摘要

The application of control tools to complex flows frequently requires approximations, such as reduced-order models and/or simplified forcing assumptions, where these may be considered low rank or defined in terms of simplified statistics (e.g. white noise). In this work we propose a resolvent-based control methodology with causality imposed via a Wiener–Hopf formalism. Linear optimal causal estimation and control laws are obtained directly from full-rank, globally stable systems with arbitrary disturbance statistics, circumventing many drawbacks of alternative methods. We use efficient, matrix-free methods to construct the matrix Wiener–Hopf problem, and we implement a tailored method to solve the problem numerically. The approach naturally handles forcing terms with space–time colour; it allows inexpensive parametric investigation of sensor/actuator placement in scenarios where disturbances/targets are low rank; it is directly applicable to complex flows disturbed by high-rank forcing; it has lower cost in comparison to standard methods; it can be used in scenarios where an adjoint solver is not available; or it can be based exclusively on experimental data. The method is particularly well suited for the control of amplifier flows, for which optimal control approaches are typically robust. Validation of the approach is performed using the linearized Ginzburg–Landau equation. Flow over a backward-facing step perturbed by high-rank forcing is then considered. Sensor and actuator placement are investigated for this case, and we show that while the flow response downstream of the step is dominated by the Kelvin–Helmholtz mechanism, it has a complex, high-rank receptivity to incoming upstream perturbations, requiring multiple sensors for control.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
依古比古完成签到 ,获得积分10
1秒前
汎影发布了新的文献求助10
1秒前
小二完成签到,获得积分10
1秒前
2秒前
4秒前
顾矜应助长情洙采纳,获得10
4秒前
monere发布了新的文献求助30
4秒前
Xiaoxiao应助汉关采纳,获得10
6秒前
6秒前
汎影完成签到,获得积分10
7秒前
8秒前
Chen发布了新的文献求助10
10秒前
WW完成签到,获得积分10
10秒前
12秒前
hyjcnhyj完成签到,获得积分10
13秒前
英姑应助赖道之采纳,获得10
14秒前
16秒前
研友_LXdbaL发布了新的文献求助30
16秒前
思源应助单薄新烟采纳,获得10
17秒前
17秒前
18秒前
Zz完成签到,获得积分10
18秒前
Prandtl完成签到 ,获得积分10
20秒前
21秒前
zfzf0422完成签到 ,获得积分10
22秒前
上官若男应助jackie采纳,获得10
22秒前
22秒前
我是站长才怪应助Benliu采纳,获得20
23秒前
23秒前
zh20130完成签到,获得积分10
23秒前
23秒前
TT发布了新的文献求助10
24秒前
Star1983发布了新的文献求助10
24秒前
研友_LXdbaL完成签到,获得积分10
25秒前
26秒前
在水一方应助66采纳,获得10
27秒前
27秒前
27秒前
缘一发布了新的文献求助10
28秒前
junzilan发布了新的文献求助10
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808