Resolvent-based tools for optimal estimation and control via the Wiener–Hopf formalism

解算器 计算机科学 应用数学 正压流体 解决方案 控制理论(社会学) 数学优化 数学 数学分析 物理 控制(管理) 人工智能 机械
作者
Eduardo Martini,Junoh Jung,André V. G. Cavalieri,Peter Jordan,Aaron Towne
出处
期刊:Journal of Fluid Mechanics [Cambridge University Press]
卷期号:937 被引量:21
标识
DOI:10.1017/jfm.2022.102
摘要

The application of control tools to complex flows frequently requires approximations, such as reduced-order models and/or simplified forcing assumptions, where these may be considered low rank or defined in terms of simplified statistics (e.g. white noise). In this work we propose a resolvent-based control methodology with causality imposed via a Wiener–Hopf formalism. Linear optimal causal estimation and control laws are obtained directly from full-rank, globally stable systems with arbitrary disturbance statistics, circumventing many drawbacks of alternative methods. We use efficient, matrix-free methods to construct the matrix Wiener–Hopf problem, and we implement a tailored method to solve the problem numerically. The approach naturally handles forcing terms with space–time colour; it allows inexpensive parametric investigation of sensor/actuator placement in scenarios where disturbances/targets are low rank; it is directly applicable to complex flows disturbed by high-rank forcing; it has lower cost in comparison to standard methods; it can be used in scenarios where an adjoint solver is not available; or it can be based exclusively on experimental data. The method is particularly well suited for the control of amplifier flows, for which optimal control approaches are typically robust. Validation of the approach is performed using the linearized Ginzburg–Landau equation. Flow over a backward-facing step perturbed by high-rank forcing is then considered. Sensor and actuator placement are investigated for this case, and we show that while the flow response downstream of the step is dominated by the Kelvin–Helmholtz mechanism, it has a complex, high-rank receptivity to incoming upstream perturbations, requiring multiple sensors for control.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wsh发布了新的文献求助10
2秒前
6秒前
A拉拉拉完成签到,获得积分10
7秒前
凝黛完成签到,获得积分10
7秒前
青青子衿完成签到,获得积分10
7秒前
8秒前
A拉拉拉发布了新的文献求助10
9秒前
12秒前
善学以致用应助wsh采纳,获得10
13秒前
酷波er应助研友_xLOMQZ采纳,获得30
13秒前
深情安青应助科研通管家采纳,获得10
19秒前
GEOPYJ应助科研通管家采纳,获得10
19秒前
CipherSage应助科研通管家采纳,获得10
19秒前
杜宇完成签到 ,获得积分10
20秒前
20秒前
吴博文完成签到,获得积分20
24秒前
dudu发布了新的文献求助30
25秒前
阿怪发布了新的文献求助10
28秒前
天天快乐应助按照习采纳,获得10
29秒前
29秒前
乌龟走到哪里了完成签到,获得积分10
32秒前
tonstark完成签到,获得积分10
32秒前
深情安青应助BioJ采纳,获得10
34秒前
思源应助傢誠采纳,获得10
35秒前
雪山飞龙发布了新的文献求助10
36秒前
星辰大海应助CaptainLz采纳,获得10
37秒前
开心的饼干完成签到,获得积分10
39秒前
开心的大娘完成签到,获得积分10
42秒前
SciGPT应助小稻草人采纳,获得10
46秒前
47秒前
Jasper应助傢誠采纳,获得10
47秒前
小熊熊完成签到,获得积分10
48秒前
cllcx完成签到,获得积分10
48秒前
InfoNinja应助Reset采纳,获得30
49秒前
K珑完成签到,获得积分10
49秒前
HC完成签到 ,获得积分10
49秒前
lishan完成签到,获得积分10
51秒前
彭于晏应助嵩易凯采纳,获得10
52秒前
希望天下0贩的0应助zzz采纳,获得10
53秒前
虚心向梦完成签到,获得积分20
54秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Heteroatom-Doped Carbon Allotropes: Progress in Synthesis, Characterization, and Applications 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159847
求助须知:如何正确求助?哪些是违规求助? 2810808
关于积分的说明 7889521
捐赠科研通 2469910
什么是DOI,文献DOI怎么找? 1315173
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012