A novel multivariable time series prediction model for acute kidney injury in general hospitalization

机器学习 人工智能 多元统计 计算机科学 预测建模 医学 循环神经网络 接收机工作特性 人口统计学的 多元分析 人工神经网络 社会学 人口学
作者
Jie Xu,Yanxiang Hu,Heng Liu,Wansheng Mi,Guisen Li,Jinhong Guo,Yunlin Feng
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:161: 104729-104729 被引量:7
标识
DOI:10.1016/j.ijmedinf.2022.104729
摘要

Early recognition and prevention are important to reduce the risk of acute kidney injury (AKI). We aimed to build a novel multivariate time series prediction model for dynamic AKI prediction in general hospitalization.Deidentified electronic data of all patients admitted in Sichuan Provincial Peoples Hospital during 1 January 2019 and 31 December 2019 was retrospectively collected. Variables including demographics, admission variables, lab investigation variables and prescription variables were extracted. The first 50 most frequently detected lab investigation variables were selected as the predictive variables. Features within three previous days were selected to predict the risk of AKI in the next 24 h. The model was built using recurrent neural network (RNN) algorithm integrated with a time series convolution module and an attention convolution module and internally validated using five-fold cross-validation. Area under the ROC curve (AUC) and recall rate were used to evaluate the performance. The model was compared with four other models built using other machine learning algorithms and published machine learning models in literature.47,960 eligible admissions were identified, among which 2694 (5.6%) admissions were complicated by AKI. Our model has an AUC of 0.908 and a recall rate of 0.869, outperforming models generated by mainstay machine learning methods and most of the published machine learning models.This study reports a novel machine learning prediction model for AKI in general hospitalization which is based on RNN algorithm. The model outperforms models generated by mainstay machine learning methods and most of the published machine learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zino完成签到,获得积分10
刚刚
刚刚
Zhou完成签到,获得积分10
刚刚
WindDreamer完成签到,获得积分10
刚刚
刚刚
明理含之完成签到,获得积分10
刚刚
自觉夏瑶完成签到,获得积分20
1秒前
Han发布了新的文献求助10
1秒前
1秒前
凉面完成签到 ,获得积分10
1秒前
猪猪女孩完成签到,获得积分10
2秒前
2秒前
cocolu应助wwhh采纳,获得10
3秒前
WHY发布了新的文献求助10
3秒前
3秒前
嘎嘎嘎嘎发布了新的文献求助10
4秒前
131发布了新的文献求助10
4秒前
dingning发布了新的文献求助10
4秒前
杨傲多完成签到,获得积分20
4秒前
迷人幻波发布了新的文献求助10
4秒前
4秒前
优雅的行云应助YJ采纳,获得10
5秒前
6秒前
ACE发布了新的文献求助200
7秒前
fuxiao完成签到 ,获得积分10
7秒前
时冬冬发布了新的文献求助30
7秒前
wanci发布了新的文献求助30
8秒前
8秒前
安详的灰狼应助ruo采纳,获得10
9秒前
9秒前
10秒前
心理学狗都不学完成签到,获得积分10
11秒前
维尼完成签到,获得积分10
11秒前
ZL发布了新的文献求助30
11秒前
12秒前
xiao金发布了新的文献求助10
13秒前
落寞白曼完成签到,获得积分10
13秒前
彩虹天堂完成签到,获得积分10
13秒前
13秒前
冷傲半邪发布了新的文献求助200
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308038
求助须知:如何正确求助?哪些是违规求助? 2941584
关于积分的说明 8504244
捐赠科研通 2616093
什么是DOI,文献DOI怎么找? 1429449
科研通“疑难数据库(出版商)”最低求助积分说明 663767
邀请新用户注册赠送积分活动 648712