清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Transformer-Based Multistage Enhancement for Remote Sensing Image Super-Resolution

增采样 计算机科学 保险丝(电气) 特征提取 变压器 人工智能 编码器 模式识别(心理学) 卷积神经网络 计算机视觉 高分辨率 遥感 图像(数学) 电压 工程类 电气工程 操作系统 地质学
作者
Sen Lei,Zhenwei Shi,Wenjing Mo
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-11 被引量:185
标识
DOI:10.1109/tgrs.2021.3136190
摘要

Convolutional neural networks have made a great breakthrough in recent remote sensing image super-resolution (SR) tasks. Most of these methods adopt upsampling layers at the end of the models to perform enlargement, which ignores feature extraction in the high-dimension space, and thus, limits SR performance. To address this problem, we propose a new SR framework for remote sensing images to enhance the high-dimensional feature representation after the upsampling layers. We name the proposed method as a transformer-based enhancement network (TransENet), where transformers are introduced to exploit features at different levels. The core of the TransENet is a transformer-based multistage enhancement structure, which can be combined with traditional SR frameworks to fuse multiscale high-/low-dimension features. Specifically, in this structure, the encoders aim to embed the multilevel features in the feature extraction part and the decoders are used to fuse these encoded embeddings. Experimental results demonstrate that our proposed TransENet can improve super-resolved results and obtain superior performance over several state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海英完成签到,获得积分10
1秒前
luobote完成签到 ,获得积分10
8秒前
吕佳完成签到 ,获得积分10
9秒前
限量版小祸害完成签到 ,获得积分10
12秒前
qiqi完成签到,获得积分10
14秒前
15秒前
我是老大应助Joy采纳,获得10
19秒前
qiqiqiqiqi完成签到 ,获得积分10
19秒前
Singularity完成签到,获得积分0
20秒前
早睡早起身体好Q完成签到 ,获得积分10
35秒前
沉静香氛完成签到 ,获得积分10
36秒前
naczx完成签到,获得积分0
39秒前
李志全完成签到 ,获得积分10
42秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
xgx984完成签到,获得积分10
43秒前
共享精神应助keke采纳,获得10
50秒前
Nene完成签到 ,获得积分10
52秒前
ChatGPT完成签到,获得积分10
53秒前
大模型应助Zhuyin采纳,获得10
54秒前
55秒前
MoodMeed完成签到,获得积分10
58秒前
58秒前
Joy发布了新的文献求助10
59秒前
keke发布了新的文献求助10
1分钟前
顺利问玉完成签到 ,获得积分10
1分钟前
害羞的裘完成签到 ,获得积分10
1分钟前
此时此刻完成签到 ,获得积分10
1分钟前
SciGPT应助Joy采纳,获得10
1分钟前
1分钟前
mengqing发布了新的文献求助10
1分钟前
1分钟前
coding完成签到,获得积分10
1分钟前
Lucas应助积极香菜采纳,获得10
1分钟前
玺青一生完成签到 ,获得积分10
1分钟前
平常的三问完成签到 ,获得积分10
1分钟前
呼延坤完成签到 ,获得积分10
1分钟前
阿泽发布了新的文献求助10
2分钟前
非我完成签到 ,获得积分0
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Terminologia Embryologica 500
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612035
求助须知:如何正确求助?哪些是违规求助? 4696186
关于积分的说明 14890583
捐赠科研通 4731071
什么是DOI,文献DOI怎么找? 2546115
邀请新用户注册赠送积分活动 1510425
关于科研通互助平台的介绍 1473310