炎症
兴奋剂
医学
受体
药理学
化学
内科学
免疫学
作者
Te Jiang,Di Zhao,Zhiyuan Zheng,Zhankui Li
出处
期刊:Inflammation
[Springer Nature]
日期:2022-01-14
卷期号:45 (3): 1298-1312
被引量:12
标识
DOI:10.1007/s10753-022-01621-4
摘要
Sigma non-opioid intracellular receptor 1 (Sigma-1R) has been proven to play a major role in inflammation and structural remodeling. However, its role in airway inflammation and airway remodeling remains unclear. The purpose of this study aimed to explore the role and mechanism of Sigma-1R in airway remodeling and epithelial-mesenchymal transition (EMT) process in vivo and in vitro. We observed the decrease of Sigma-1R in lung tissue of asthma model. In the mouse model of allergic airway inflammation (AAI), Sigma-1R agonist RPE-084 significantly relieved airway inflammation and airway remodeling, while Sigma-1R antagonist BD1047 (B8562) had opposite effects. Further research showed that RPE-084 treatment increased the expression of pAMPK and inhibited the expression of CXCR4. Furthermore, RPE-084 treatment suppressed the levels of IL-4, IL-5, and IL-13 in BALF. We found that RPE-084 or Sigma-1R overexpression vector treatment regulated cell cycle and inhibited cell proliferation, migration, and EMT process in TGF-β1-induced 16HBE cells. Finally, we confirmed that AMP-activated protein kinase (AMPK) inhibitor compound C or CXCR4 agonist ATI-2341 both reversed the effects of Sigma-1R on TGF-β1-induced 16 HBE cells. In a word, our research shows that Sigma-1R is helpful to improve airway remodeling of asthma, and emphasizes a new candidate molecular for asthma treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI