Visualization of the Delithiation Mechanisms in High-Voltage Battery Material LiCoPO4

电池(电) 可视化 材料科学 电压 纳米技术 计算机科学 电气工程 工程类 物理 热力学 数据挖掘 功率(物理)
作者
Laura Wheatcroft,Trung Dung Tran,Doğan Özkaya,James Cookson,Beverley J. Inkson
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:5 (1): 196-206 被引量:4
标识
DOI:10.1021/acsaem.1c02742
摘要

LiCoPO4 is a high-voltage Li-ion battery material seen as a potential candidate for electric vehicles due to its high energy density. However, LiCoPO4 cathodes suffer from severe degradation on cycling. To date, most LiCoPO4 studies have involved bulk characterization techniques that do not allow the phases formed to be spatially resolved; thus, information on which phases contribute to the severity of degradation, and reasons why, is lost. Here, the delithiation mechanisms of LiCoPO4 are visualized by mapping changes in the valence state of Co across the electrode using ex situ electron energy loss spectroscopy (EELS). To understand the effect of Co–O hybridization on LiCoPO4 cyclability, changes in the O K-edge across the electrode during the first cycle and later cycles were also mapped. Co valence state EELS mapping showed that lithium-poor phases initially form on the outer edge of particles, corroborating a shrinking-core delithiation mechanism, which was previously proposed from in situ X-ray diffraction (XRD). At higher potentials, the presence of Li-poor CoPO4 correlates with Co–O bond hybridization; thus, the instability of CoPO4 leads to attack from the electrolyte and degradation at the electrode/electrolyte interface. The instability of the delithiated phase results in Li reincorporation at the surface at high potentials, shown by Co valence state EELS by Co(II)-rich regions forming on the surface of particles at high potentials. By the 10th cycle, CoPO4 no longer forms and capacity loss is caused by Li retention in the LiCoPO4 lattice. The Co valence state EELS study reveals that strategies to improve the cyclability of LiCoPO4 should focus on improving the stability of CoPO4 or on methods to shield CoPO4 from electrolyte degradation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助无敌龙傲天采纳,获得10
2秒前
2秒前
4秒前
4秒前
5秒前
6秒前
7秒前
8秒前
9秒前
9秒前
10秒前
bosslin发布了新的文献求助10
10秒前
10秒前
草木发布了新的文献求助10
11秒前
Jane发布了新的文献求助10
11秒前
匿名网友发布了新的文献求助10
12秒前
12秒前
13秒前
友好的听寒完成签到,获得积分10
14秒前
14秒前
你好关注了科研通微信公众号
15秒前
eurus发布了新的文献求助10
17秒前
充电宝应助苯二氮卓采纳,获得10
18秒前
Jiaxiao发布了新的文献求助10
18秒前
脑洞疼应助Hmzh采纳,获得10
20秒前
所所应助Jane采纳,获得10
20秒前
无情的聋五完成签到,获得积分20
21秒前
清酒少年游完成签到,获得积分10
22秒前
23秒前
悦耳的柠檬完成签到,获得积分10
23秒前
24秒前
科研通AI2S应助eurus采纳,获得10
24秒前
Joanna完成签到,获得积分10
26秒前
26秒前
28秒前
lcyxdsl发布了新的文献求助10
28秒前
WQ发布了新的文献求助10
28秒前
你好发布了新的文献求助10
28秒前
眉姐姐的藕粉桂花糖糕完成签到 ,获得积分10
29秒前
29秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141416
求助须知:如何正确求助?哪些是违规求助? 2792460
关于积分的说明 7802733
捐赠科研通 2448629
什么是DOI,文献DOI怎么找? 1302677
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237