Visualization of the Delithiation Mechanisms in High-Voltage Battery Material LiCoPO4

电池(电) 可视化 材料科学 电压 纳米技术 计算机科学 电气工程 工程类 物理 热力学 数据挖掘 功率(物理)
作者
Laura Wheatcroft,Trung Dung Tran,Doğan Özkaya,James Cookson,Beverley J. Inkson
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:5 (1): 196-206 被引量:4
标识
DOI:10.1021/acsaem.1c02742
摘要

LiCoPO4 is a high-voltage Li-ion battery material seen as a potential candidate for electric vehicles due to its high energy density. However, LiCoPO4 cathodes suffer from severe degradation on cycling. To date, most LiCoPO4 studies have involved bulk characterization techniques that do not allow the phases formed to be spatially resolved; thus, information on which phases contribute to the severity of degradation, and reasons why, is lost. Here, the delithiation mechanisms of LiCoPO4 are visualized by mapping changes in the valence state of Co across the electrode using ex situ electron energy loss spectroscopy (EELS). To understand the effect of Co–O hybridization on LiCoPO4 cyclability, changes in the O K-edge across the electrode during the first cycle and later cycles were also mapped. Co valence state EELS mapping showed that lithium-poor phases initially form on the outer edge of particles, corroborating a shrinking-core delithiation mechanism, which was previously proposed from in situ X-ray diffraction (XRD). At higher potentials, the presence of Li-poor CoPO4 correlates with Co–O bond hybridization; thus, the instability of CoPO4 leads to attack from the electrolyte and degradation at the electrode/electrolyte interface. The instability of the delithiated phase results in Li reincorporation at the surface at high potentials, shown by Co valence state EELS by Co(II)-rich regions forming on the surface of particles at high potentials. By the 10th cycle, CoPO4 no longer forms and capacity loss is caused by Li retention in the LiCoPO4 lattice. The Co valence state EELS study reveals that strategies to improve the cyclability of LiCoPO4 should focus on improving the stability of CoPO4 or on methods to shield CoPO4 from electrolyte degradation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
魏煜佳发布了新的文献求助10
1秒前
2秒前
2秒前
潸潸发布了新的文献求助10
3秒前
脆弱的仙人掌完成签到,获得积分20
3秒前
成哥发布了新的文献求助10
3秒前
灵巧的坤完成签到,获得积分10
4秒前
王某人完成签到 ,获得积分10
4秒前
欢呼的明雪完成签到,获得积分10
5秒前
5秒前
嘉禾望岗发布了新的文献求助10
5秒前
大橙子完成签到,获得积分10
5秒前
东北信风完成签到 ,获得积分10
5秒前
今后应助祝顺遂采纳,获得10
5秒前
NADA完成签到,获得积分10
6秒前
长安完成签到,获得积分10
6秒前
AA完成签到,获得积分10
6秒前
NANA发布了新的文献求助10
6秒前
8秒前
8秒前
9秒前
11秒前
11秒前
12秒前
科研通AI5应助无悔呀采纳,获得10
12秒前
12秒前
littlewhite关注了科研通微信公众号
13秒前
13秒前
零点起步完成签到,获得积分10
13秒前
慕青应助大力的含卉采纳,获得10
13秒前
善良过客发布了新的文献求助10
14秒前
14秒前
14秒前
dildil发布了新的文献求助10
14秒前
14秒前
hu970发布了新的文献求助10
15秒前
15秒前
王思鲁发布了新的文献求助30
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759