Modeling repeated self-reported outcome data: A continuous-time longitudinal Item Response Theory model

项目反应理论 结果(博弈论) 纵向数据 计量经济学 心理测量学 统计 计算机科学 数学 数据挖掘 数理经济学
作者
Cécile Proust‐Lima,Viviane Philipps,Bastien Perrot,Myriam Blanchin,Véronique Sébille
出处
期刊:Methods [Elsevier]
卷期号:204: 386-395 被引量:11
标识
DOI:10.1016/j.ymeth.2022.01.005
摘要

Item Response Theory (IRT) models have received growing interest in health science for analyzing latent constructs such as depression, anxiety, quality of life or cognitive functioning from the information provided by each individual’s items responses. However, in the presence of repeated item measures, IRT methods usually assume that the measurement occasions are made at the exact same time for all patients. In this paper, we show how the IRT methodology can be combined with the mixed model theory to provide a longitudinal IRT model which exploits the information of a measurement scale provided at the item level while simultaneously handling observation times that may vary across individuals and items. The latent construct is a latent process defined in continuous time that is linked to the observed item responses through a measurement model at each individual- and occasion-specific observation time; we focus here on a Graded Response Model for binary and ordinal items. The Maximum Likelihood Estimation procedure of the model is available in the R package lcmm. The proposed approach is contextualized in a clinical example in end-stage renal disease, the PREDIALA study. The objective is to study the trajectories of depressive symptomatology (as measured by 7 items of the Hospital Anxiety and Depression scale) according to the time from registration on the renal transplant waiting list and the renal replacement therapy. We also illustrate how the method can be used to assess Differential Item Functioning and lack of measurement invariance over time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
jdndbd完成签到,获得积分10
1秒前
失眠的香菇完成签到 ,获得积分10
1秒前
1秒前
yangqi完成签到,获得积分10
2秒前
Zll发布了新的文献求助10
2秒前
2秒前
我爱科研完成签到,获得积分10
2秒前
kelly9110发布了新的文献求助10
2秒前
3秒前
GingerF应助sxx采纳,获得60
4秒前
4秒前
完美的香芦完成签到,获得积分10
4秒前
5秒前
隐形曼青应助cya采纳,获得10
5秒前
wanci应助滴答采纳,获得10
5秒前
ppp关闭了ppp文献求助
6秒前
闫永洁完成签到,获得积分10
6秒前
TianFuAI发布了新的文献求助10
7秒前
风中忆秋发布了新的文献求助10
7秒前
帅气的宽完成签到 ,获得积分10
7秒前
肖不错完成签到 ,获得积分10
8秒前
炙热百川发布了新的文献求助10
8秒前
8秒前
8秒前
明明明完成签到,获得积分10
9秒前
贪玩的机器猫完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
赘婿应助淡然的香薇采纳,获得20
11秒前
鳄鱼队长完成签到,获得积分10
12秒前
微笑的凌旋完成签到 ,获得积分10
12秒前
12秒前
12秒前
12秒前
科研狗完成签到,获得积分10
13秒前
14秒前
15秒前
15秒前
今后应助hq采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425