吗啡
内分泌学
内科学
蓝斑
生理盐水
医学
开阔地
方差分析
类阿片
受体
中枢神经系统
作者
Xinyi Li,Dushyant Kshatriya,Nicholas T. Bello
标识
DOI:10.1016/j.pbb.2022.173329
摘要
Interactions between obesity and opioid use are poorly understood. The objective of this study was to determine whether phenotypic differences in diet-induced weight gain altered morphine withdrawal responses. Male and female C57BL/6J mice were characterized as obese prone (OP) or obese resistant (OR) based on median split in body weights following exposure to high-fat diet (45% fat). After classification into OP or OR, all mice were fed a low-fat diet (10% fat) for the remainder of the study (≥5 weeks) to remain weight matched. Mice were treated with a 7-day escalating dosing scheme of morphine (20-100 mg/kg; IP) or saline and underwent a spontaneous withdrawal. Morphine-induced weight loss was restored by withdrawal day 7. On withdrawal day 8, male OP demonstrated less total time mobile in the open field test (OFT). In females, OR-morphine traveled less distance than OR-saline, and OR-morphine spent less time mobile compared with all other groups in the OFT. Female OP also increased time spent in the center of the apparatus, regardless of treatment. On withdrawal day 8, relative gene expression was measured by qPCR. For males, expression of dopamine beta-hydroxylase (dbh), alpha-adrenergic receptor 2 a (adra2a), and orexin receptor 1 (orx1) were increased in the locus coeruleus (LC) region of OP mice, regardless of treatment. In comparison, in females, dbh and adra2a were decreased in the LC region of OP mice, regardless of treatment. Also, in the LC region of females, OP-morphine had lower expression of alpha-adrenergic receptor 1 a (adra1a) than OR-morphine and OP-saline. In the hypothalamic paraventricular nucleus (PVN) of females, adra2a was increased in OP-morphine compared with OP-saline and OR-morphine. Our findings suggest morphine withdrawal responses and regional expression of noradrenergic-related genes are differentially influenced by weight gain propensity.
科研通智能强力驱动
Strongly Powered by AbleSci AI