自回归滑动平均模型
股票市场指数
股票市场
时间序列
计量经济学
自回归模型
波动性(金融)
系列(地层学)
库存(枪支)
计算机科学
移动平均线
数学
统计
机械工程
古生物学
马
生物
工程类
作者
Pin Lv,Qinjuan Wu,Jia Xu,Yating Shu
出处
期刊:Entropy
[Multidisciplinary Digital Publishing Institute]
日期:2022-01-19
卷期号:24 (2): 146-146
被引量:37
摘要
The stock index is an important indicator to measure stock market fluctuation, with a guiding role for investors' decision-making, thus being the object of much research. However, the stock market is affected by uncertainty and volatility, making accurate prediction a challenging task. We propose a new stock index forecasting model based on time series decomposition and a hybrid model. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) decomposes the stock index into a series of Intrinsic Mode Functions (IMFs) with different feature scales and trend term. The Augmented Dickey Fuller (ADF) method judges the stability of each IMFs and trend term. The Autoregressive Moving Average (ARMA) model is used on stationary time series, and a Long Short-Term Memory (LSTM) model extracts abstract features of unstable time series. The predicted results of each time sequence are reconstructed to obtain the final predicted value. Experiments are conducted on four stock index time series, and the results show that the prediction of the proposed model is closer to the real value than that of seven reference models, and has a good quantitative investment reference value.
科研通智能强力驱动
Strongly Powered by AbleSci AI