纳米片
氧气
材料科学
自旋态
镍
锂(药物)
氧化还原
纳米线
电化学
纳米技术
金属
析氧
化学物理
化学工程
化学
电极
无机化学
物理化学
医学
有机化学
内分泌学
工程类
冶金
作者
Qingliang Lv,Zhuo Zhu,Youxuan Ni,Jiarun Geng,Fujun Li
出处
期刊:Angewandte Chemie
[Wiley]
日期:2021-12-18
卷期号:61 (8): e202114293-e202114293
被引量:135
标识
DOI:10.1002/anie.202114293
摘要
Abstract Aprotic Li−O 2 batteries have attracted extensive attention in the past decade owing to their high theoretical energy density; however, they are obstructed by the sluggish reaction kinetics at the cathode and large voltage hysteresis. We regulate the spin state of partial Ni 2+ metal centers ( t 2g 6 e g 2 ) of conductive nickel catecholate framework (Ni II ‐NCF) nanowire arrays to high‐valence Ni 3+ ( t 2g 6 e g 1 ) for Ni III ‐NCF. The spin‐state modulation enables enhanced nickel–oxygen covalency in Ni III ‐NCF, which facilitates electron exchange between the Ni sites and oxygen adsorbates and accelerates the oxygen redox kinetics. Upon discharging, the high affinity of Ni 3+ sites with the intermediate LiO 2 promotes formation of nanosheet‐like Li 2 O 2 in the void space among Ni III ‐NCF nanowires. The Li−O 2 battery based on Ni III ‐NCF offers remarkably reduced discharge/charge voltage gaps, superior rate capability, and a long cycling stability of over 200 cycles. This work highlights the importance of electron spin state on the redox kinetics and will provide insight into electronic structure regulation of electrocatalysts for Li−O 2 batteries and beyond.
科研通智能强力驱动
Strongly Powered by AbleSci AI