Cutting Depth Dictates the Transition from Continuous to Segmented Chip Formation

碎屑形成 材料科学 机械 变形(气象学) 炸薯条 剪切(地质) 断裂(地质) 机械加工 复合材料 机械工程 计算机科学 物理 刀具磨损 电信 工程类 冶金
作者
Ramin Aghababaei,Mohammad Malekan,Michal K. Budzik
出处
期刊:Physical Review Letters [American Physical Society]
卷期号:127 (23) 被引量:1
标识
DOI:10.1103/physrevlett.127.235502
摘要

The process of material cutting emerges from a series of nonlinear phenomena including frictional contact, plastic deformation, and fracture. While cutting dominated by shear deformation is of interest to achieve a smooth material removal and a high-quality surface finish, the fracture-induced chip breaking is of equal importance to prevent the formation of long chips. Here we show that discrepant observations and predictions of these two distinct cutting mechanisms can be reconciled into a unified framework. A simple analytical model is developed to predict the mechanism of chip formation in a homogeneous medium as a function of work piece intrinsic material properties, tool geometry, and the process parameters. The model reveals the existence of a critical depth of cut, below which the chip formation is gradually progressed by plastic deformation in the shear plane, and above which chips break off by abrupt crack propagation. The models' prediction is validated by systematic in situ orthogonal cutting experiments and literature data for a wide range of materials over multiple length scales.Received 13 July 2021Accepted 20 October 2021DOI:https://doi.org/10.1103/PhysRevLett.127.235502Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasContinuum mechanicsFractureMechanical deformationPlastic deformationPlasticitySurface & interfacial phenomenaTribologyWearCondensed Matter, Materials & Applied Physics

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒心完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
果子发布了新的文献求助10
2秒前
威武的铭发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
Marybaby完成签到,获得积分10
7秒前
优娜发布了新的文献求助10
7秒前
JH完成签到,获得积分20
8秒前
wjw完成签到,获得积分10
10秒前
斯通纳完成签到 ,获得积分10
10秒前
11秒前
可爱的函函应助看文献了采纳,获得10
11秒前
WWF完成签到,获得积分10
11秒前
半农应助李蕊采纳,获得30
12秒前
12秒前
13秒前
14秒前
16秒前
朴实孤云发布了新的文献求助10
16秒前
小鹿发布了新的文献求助10
16秒前
LYegoist完成签到,获得积分10
16秒前
深情的紫寒完成签到,获得积分10
17秒前
mimiya发布了新的文献求助10
17秒前
小二郎应助五山第一院士采纳,获得10
17秒前
乐空思应助cciocio采纳,获得50
18秒前
18秒前
MphyLaw完成签到,获得积分10
18秒前
王ml完成签到,获得积分10
19秒前
19秒前
义气的水蓝完成签到 ,获得积分10
19秒前
20秒前
Jasper应助maker采纳,获得10
21秒前
12138发布了新的文献求助10
23秒前
23秒前
sqlin完成签到 ,获得积分10
23秒前
MphyLaw发布了新的文献求助10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632532
求助须知:如何正确求助?哪些是违规求助? 4727146
关于积分的说明 14982446
捐赠科研通 4790501
什么是DOI,文献DOI怎么找? 2558350
邀请新用户注册赠送积分活动 1518735
关于科研通互助平台的介绍 1479145