Cutting Depth Dictates the Transition from Continuous to Segmented Chip Formation

碎屑形成 材料科学 机械 变形(气象学) 炸薯条 剪切(地质) 断裂(地质) 机械加工 复合材料 机械工程 计算机科学 物理 刀具磨损 电信 工程类 冶金
作者
Ramin Aghababaei,Mohammad Malekan,Michal K. Budzik
出处
期刊:Physical Review Letters [American Physical Society]
卷期号:127 (23) 被引量:1
标识
DOI:10.1103/physrevlett.127.235502
摘要

The process of material cutting emerges from a series of nonlinear phenomena including frictional contact, plastic deformation, and fracture. While cutting dominated by shear deformation is of interest to achieve a smooth material removal and a high-quality surface finish, the fracture-induced chip breaking is of equal importance to prevent the formation of long chips. Here we show that discrepant observations and predictions of these two distinct cutting mechanisms can be reconciled into a unified framework. A simple analytical model is developed to predict the mechanism of chip formation in a homogeneous medium as a function of work piece intrinsic material properties, tool geometry, and the process parameters. The model reveals the existence of a critical depth of cut, below which the chip formation is gradually progressed by plastic deformation in the shear plane, and above which chips break off by abrupt crack propagation. The models' prediction is validated by systematic in situ orthogonal cutting experiments and literature data for a wide range of materials over multiple length scales.Received 13 July 2021Accepted 20 October 2021DOI:https://doi.org/10.1103/PhysRevLett.127.235502Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasContinuum mechanicsFractureMechanical deformationPlastic deformationPlasticitySurface & interfacial phenomenaTribologyWearCondensed Matter, Materials & Applied Physics

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pigff完成签到,获得积分10
1秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
NexusExplorer应助mogumogu采纳,获得10
3秒前
4秒前
4秒前
纯情的睫毛膏完成签到,获得积分10
4秒前
4秒前
JamesPei应助11111采纳,获得10
4秒前
干净的沛蓝完成签到,获得积分10
4秒前
5秒前
dandany发布了新的文献求助10
5秒前
主手的麻衣完成签到,获得积分10
5秒前
5秒前
彭于晏应助sakura采纳,获得10
6秒前
amupf完成签到 ,获得积分10
6秒前
7秒前
何木萧完成签到,获得积分10
7秒前
NexusExplorer应助乐观的鸽子采纳,获得10
8秒前
Irissun完成签到,获得积分10
8秒前
能量球发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
不懂白完成签到 ,获得积分10
9秒前
隐形曼青应助生动丹珍采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
科研通AI6.1应助大胆听莲采纳,获得10
10秒前
mm发布了新的文献求助10
10秒前
想躺平完成签到,获得积分10
10秒前
机智雅阳发布了新的文献求助10
10秒前
niuniu顺利毕业完成签到 ,获得积分10
10秒前
11秒前
瘦瘦慕凝完成签到,获得积分10
12秒前
kulo完成签到 ,获得积分10
12秒前
didi发布了新的文献求助10
13秒前
笨笨的诗槐完成签到 ,获得积分10
13秒前
13秒前
屿鑫完成签到,获得积分10
14秒前
超帅听枫发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5774302
求助须知:如何正确求助?哪些是违规求助? 5616901
关于积分的说明 15435297
捐赠科研通 4906803
什么是DOI,文献DOI怎么找? 2640424
邀请新用户注册赠送积分活动 1588188
关于科研通互助平台的介绍 1543228