A two-stage classifier switchable aluminum electrolysis fault diagnosis method

计算机科学 人工神经网络 布谷鸟搜索 断层(地质) 深度学习 分类器(UML) 人工智能 数据挖掘 随机森林 算法 模式识别(心理学) 实时计算 粒子群优化 地质学 地震学
作者
Tianhao Gao,Ke Zhang,Huaitao Shi,Zhao Jinbao,Jiejia Li
出处
期刊:Transactions of the Institute of Measurement and Control [SAGE Publishing]
卷期号:44 (8): 1708-1720 被引量:3
标识
DOI:10.1177/01423312211059637
摘要

Traditional aluminum electrolysis fault diagnosis methods have problems such as low accuracy, small forecast advance, and high CPU usage, which make their popularity low in enterprises. Aiming at the above problems, a fault diagnosis method with switchable two-level classifiers is designed. The input data are first judged by the first-level algorithm. If it is determined that there is no fault, the result will be output directly. If it is determined that there is a fault in the electrolytic cell, the data will be transferred to the second-level network for specific fault diagnosis. The first level is based on the Random Forest algorithm with simple structure and good two-class classification effect and is optimized by the improved cuckoo algorithm. The second level is based on an improved DBN-DNN (Deep Belief Neural Network–Deep Neural Network) algorithm, and the training method is given. Experimental results show that this method can switch between different algorithms according to different situations, save computing resources, realize that a computer can monitor multiple electrolytic cells, and reduce investment costs. In addition, the accuracy and forecast advance have been significantly improved, which has promoted the popularization of fault diagnosis systems in aluminum electrolysis enterprises.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小饭团子完成签到 ,获得积分10
1秒前
Puffkten完成签到 ,获得积分10
1秒前
liu完成签到,获得积分10
1秒前
2秒前
小大夫完成签到 ,获得积分10
2秒前
科研通AI6应助火星上立果采纳,获得10
2秒前
浮游应助鹏笑采纳,获得10
3秒前
zcl应助科研通管家采纳,获得150
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
zhihui发布了新的文献求助10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
SSNN完成签到,获得积分10
6秒前
独特秋灵应助科研通管家采纳,获得50
6秒前
量子星尘发布了新的文献求助150
6秒前
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
zcl应助科研通管家采纳,获得150
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
幕帆应助科研通管家采纳,获得20
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
zcl应助科研通管家采纳,获得60
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
zcl应助科研通管家采纳,获得150
7秒前
馆长应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
馆长应助科研通管家采纳,获得10
7秒前
7秒前
思源应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
Deng完成签到,获得积分10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
独特秋灵应助科研通管家采纳,获得50
7秒前
zcl应助科研通管家采纳,获得150
7秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142300
求助须知:如何正确求助?哪些是违规求助? 4340566
关于积分的说明 13517807
捐赠科研通 4180482
什么是DOI,文献DOI怎么找? 2292477
邀请新用户注册赠送积分活动 1293105
关于科研通互助平台的介绍 1235621