Predictors for extubation failure in COVID-19 patients using a machine learning approach

医学 切断 重症监护 2019年冠状病毒病(COVID-19) 病危 急诊医学 重症监护医学 人口统计学的 生命体征 沙发评分 内科学 麻醉 人口学 传染病(医学专业) 疾病 社会学 物理 量子力学
作者
Lucas M. Fleuren,Tariq A. Dam,Michele Tonutti,Daan P. de Bruin,Ali el Hassouni,Diederik Gommers,Olaf L. Cremer,Rob J. Bosman,Sander Rigter,Evert‐Jan Wils,Tim Frenzel,Dave A. Dongelmans,Remko de Jong,Marco Peters,Marlijn J. A. Kamps,Dharmanand Ramnarain,Ralph Nowitzky,Fleur G. C. A. Nooteboom,Wouter de Ruijter,Louise C. Urlings‐Strop,Ellen G. M. Smit,D. Jannet Mehagnoul‐Schipper,Tom Dormans,Cornelis P. C. de Jager,Stefaan H. A. Hendriks,Sefanja Achterberg,Evelien Oostdijk,Auke C. Reidinga,Barbara Festen‐Spanjer,Gert B. Brunnekreef,Alexander D. Cornet,Walter van den Tempel,Age D. Boelens,Peter Koetsier,Judith Lens,Harald J. Faber,A. Karakus,Robert Entjes,P. de Jong,Thijs C. D. Rettig,M. Sesmu Arbous,Sebastiaan J. J. Vonk,Mattia Fornasa,Tomas Machado,Taco Houwert,Hidde Hovenkamp,Roberto Noorduijn Londono,Davide Quintarelli,Martijn G. Scholtemeijer,Aletta A. de Beer,Giovanni Cinà,Adam Kantorik,Tom de Ruijter,Willem E. Herter,Martijn Beudel,Armand R. J. Girbes,Mark Hoogendoorn,Patrick Thoral,Paul Elbers,Julia Koeter,Roger van Rietschote,M. C. Reuland,Laura van Manen,Leon J. Montenij,Jasper van Bommel,Roy van den Berg,Ellen van Geest,Anisa Hana,Bas van den Bogaard,Peter Pickkers,Pim van der Heiden,Claudia van Gemeren,Arend Jan Meinders,Martha de Bruin,Emma Rademaker,Frits van Osch,Martijn D. de Kruif,Nicolas F. Schroten,Klaas Sierk Arnold,Jan-Willem Fijen,Jacomar J. M. van Koesveld,Koen S. Simons,Joost A. M. Labout,Bart van de Gaauw,Michael Kuiper,Albertus Beishuizen,Dennis Geutjes,Johan Lutisan,Bart Grady,Remko van den Akker,Tom A. Rijpstra,Wim Janssens,Daniël Pretorius,Menno Beukema,Bram Simons,A. A. Rijkeboer,Marcel Ariës,Niels C. Gritters van den Oever,Martijn van Tellingen,Annemieke Dijkstra
出处
期刊:Critical Care [Springer Nature]
卷期号:25 (1) 被引量:24
标识
DOI:10.1186/s13054-021-03864-3
摘要

Determining the optimal timing for extubation can be challenging in the intensive care. In this study, we aim to identify predictors for extubation failure in critically ill patients with COVID-19.We used highly granular data from 3464 adult critically ill COVID patients in the multicenter Dutch Data Warehouse, including demographics, clinical observations, medications, fluid balance, laboratory values, vital signs, and data from life support devices. All intubated patients with at least one extubation attempt were eligible for analysis. Transferred patients, patients admitted for less than 24 h, and patients still admitted at the time of data extraction were excluded. Potential predictors were selected by a team of intensive care physicians. The primary and secondary outcomes were extubation without reintubation or death within the next 7 days and within 48 h, respectively. We trained and validated multiple machine learning algorithms using fivefold nested cross-validation. Predictor importance was estimated using Shapley additive explanations, while cutoff values for the relative probability of failed extubation were estimated through partial dependence plots.A total of 883 patients were included in the model derivation. The reintubation rate was 13.4% within 48 h and 18.9% at day 7, with a mortality rate of 0.6% and 1.0% respectively. The grandient-boost model performed best (area under the curve of 0.70) and was used to calculate predictor importance. Ventilatory characteristics and settings were the most important predictors. More specifically, a controlled mode duration longer than 4 days, a last fraction of inspired oxygen higher than 35%, a mean tidal volume per kg ideal body weight above 8 ml/kg in the day before extubation, and a shorter duration in assisted mode (< 2 days) compared to their median values. Additionally, a higher C-reactive protein and leukocyte count, a lower thrombocyte count, a lower Glasgow coma scale and a lower body mass index compared to their medians were associated with extubation failure.The most important predictors for extubation failure in critically ill COVID-19 patients include ventilatory settings, inflammatory parameters, neurological status, and body mass index. These predictors should therefore be routinely captured in electronic health records.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定小白菜完成签到,获得积分10
1秒前
darmy完成签到,获得积分10
1秒前
quanjia完成签到,获得积分10
4秒前
赵小超完成签到,获得积分10
7秒前
wangechun完成签到,获得积分10
8秒前
Lucas应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
Raymond应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
赵小超发布了新的文献求助10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
medxyy完成签到,获得积分10
12秒前
科研通AI2S应助wangechun采纳,获得10
15秒前
ding应助jeff采纳,获得20
16秒前
甜甜发布了新的文献求助10
18秒前
华仔应助隐形之玉采纳,获得10
18秒前
18秒前
19秒前
虎牛发布了新的文献求助10
23秒前
diode完成签到,获得积分10
23秒前
陈淑玲完成签到,获得积分10
24秒前
24秒前
叶孤城完成签到,获得积分20
25秒前
领导范儿应助wangayting采纳,获得30
25秒前
谦让小咖啡完成签到 ,获得积分10
28秒前
29秒前
任性的傲柏完成签到,获得积分10
31秒前
SciGPT应助bestbanana采纳,获得10
33秒前
张可完成签到 ,获得积分10
34秒前
额尔其子发布了新的文献求助10
36秒前
36秒前
36秒前
科研通AI2S应助路痴采纳,获得10
36秒前
小邓顺利毕业完成签到,获得积分10
37秒前
38秒前
Thunnus001完成签到,获得积分10
40秒前
俏皮芹发布了新的文献求助10
43秒前
43秒前
科研文献搬运工应助jackten采纳,获得30
43秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137539
求助须知:如何正确求助?哪些是违规求助? 2788516
关于积分的说明 7787114
捐赠科研通 2444837
什么是DOI,文献DOI怎么找? 1300071
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023