Delineation of cultivated land parcels based on deep convolutional networks and geographical thematic scene division of remotely sensed images

专题地图 计算机科学 数字化 遥感 人工智能 信息抽取 卷积神经网络 师(数学) 深度学习 边界(拓扑) 分割 地理 地图学 计算机视觉 数学 算术 数学分析
作者
Lu Xu,Dongping Ming,Tongyao Du,Yangyang Chen,Dehui Dong,Chenghu Zhou
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:192: 106611-106611 被引量:40
标识
DOI:10.1016/j.compag.2021.106611
摘要

Extraction of cultivated land information from high spatial resolution remote sensing images is increasingly becoming an important approach to digitization and informatization in modern agriculture. The continuous development of deep learning technology has made it possible to extract information of cultivated land parcels by an intelligent way. Aiming at fine extraction of cultivated land parcels within large areas, this article builds a framework of geographical thematic scene division according to the rule of territorial differentiation in geography. A deep learning semantic segmentation network, improved U-net with depthwise separable convolution (DSCUnet), is proposed to achieve the division of the whole image. Then, an extended multichannel richer convolutional features (RCF) network is involved to delineate the boundaries of cultivated land parcels from agricultural functional scenes obtained by the former step. In order to testify the feasibility and effectiveness of the proposed methods, this article implemented experiments using Gaofen-2 images with different spatial resolution. The results show an outstanding performance using methods proposed in this article in both dividing agricultural functional scenes and delineating cultivated land parcels compared with other commonly used methods. Meanwhile, the extraction results have the highest accuracy in both the traditional evaluation indices (like Precision, Recall, F1, and IoU) and geometric boundary precision of cultivated land parcels. The methods in this article can provide a feasible solution to the problem of finely extracting cultivated land parcels information within large areas and complex landscape conditions in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
万能图书馆应助灵巧世倌采纳,获得10
1秒前
长情黑夜发布了新的文献求助10
1秒前
明亮访烟完成签到 ,获得积分10
2秒前
As发布了新的文献求助10
2秒前
nini发布了新的文献求助10
2秒前
3秒前
4秒前
李叉叉完成签到 ,获得积分10
4秒前
李叶发布了新的文献求助10
4秒前
务实水绿发布了新的文献求助10
5秒前
lyj发布了新的文献求助10
5秒前
静香发布了新的文献求助10
5秒前
6秒前
zhangkaixin完成签到,获得积分10
7秒前
再给次机会完成签到,获得积分20
7秒前
小西完成签到,获得积分10
7秒前
8秒前
xiangkun发布了新的文献求助10
8秒前
8秒前
李爱国应助As采纳,获得10
8秒前
海风完成签到 ,获得积分10
9秒前
9秒前
10秒前
10秒前
在水一方应助李叶采纳,获得10
12秒前
12秒前
12秒前
灵巧世倌完成签到,获得积分10
12秒前
李健应助zz77877采纳,获得10
13秒前
Orange应助赵依乐采纳,获得10
13秒前
咚咚应助桥豆麻袋美少女采纳,获得20
14秒前
NexusExplorer应助xiangkun采纳,获得10
14秒前
14秒前
大饼卷肉完成签到,获得积分10
14秒前
123完成签到 ,获得积分10
14秒前
15秒前
15秒前
丘比特应助发疯的游子采纳,获得30
15秒前
kkdkg发布了新的文献求助10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Plant–Pollinator Interactions: From Specialization to Generalization 400
Cai Yuanpei y la educación en la República de China (1912-1949) 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3588524
求助须知:如何正确求助?哪些是违规求助? 3156967
关于积分的说明 9513410
捐赠科研通 2859876
什么是DOI,文献DOI怎么找? 1571655
邀请新用户注册赠送积分活动 737273
科研通“疑难数据库(出版商)”最低求助积分说明 722154