在ovo
肉鸡
瘦素
生物
基因
基因表达
内分泌学
内科学
酶
细胞生物学
胚胎
医学
动物科学
遗传学
生物化学
肥胖
作者
P. Liu,Yan Hu,R. Grossmann,Ruqian Zhao
标识
DOI:10.1111/j.1439-0396.2012.01334.x
摘要
Summary To evaluate the effect of maternal leptin on muscle growth, we injected 0 μg (control, CON), 0.5 μg (low leptin dose, LL) or 5.0 μg (high leptin dose, HL) of recombinant murine leptin dissolved in 100 μl of PBS into the albumen of broiler eggs prior to incubation. The newly hatched chicks were all raised under the same conditions until 21 days of age (D21), when body weight was measured and samples of gastrocnemius muscle were collected and weighed. Myosin ATPase staining was applied to identify myofibre types and measure the cross‐sectional area (CSA) of myofibres. Real‐time PCR was performed to quantify leptin receptor (LEPR), insulin‐like growth factor 1 (IGF‐1), IGF‐1 receptor (IGF‐1R), growth hormone receptor (GHR) and myostatin (MSTN) mRNA expression in the gastrocnemius muscle. The activity of calpains (CAPNs) in the gastrocnemius muscle was measured using a quantitative fluorescence detection kit. Male chickens treated with both high and low doses of leptin had significantly higher (p < 0.05) body weight on D21. The high leptin significantly increased the CSA (p < 0.05) of gastrocnemius muscle in male chickens, which coincided with a 93% increase (p < 0.05) in IGF‐1 mRNA expression. Likewise, the LL dose increased the weight of gastrocnemius muscle in male chickens (p < 0.05), which was accompanied by a 41% down‐regulation (p < 0.05) of MSTN mRNA expression and a decreased activity of CAPNs. However, all these changes were not observed in female chickens. The proportion of myofibre types did not altered. No significant change was detected for LEPR and GHR mRNA expression. These results indicate that in ovo leptin treatment affects skeletal muscle growth in chickens in a dose‐dependent and sex‐specific manner. The altered expression of IGF‐1, MSTN mRNA and activity of CAPNs in skeletal muscle may be responsible for such effects.
科研通智能强力驱动
Strongly Powered by AbleSci AI