Multi-head attention-based probabilistic CNN-BiLSTM for day-ahead wind speed forecasting

概率预测 概率逻辑 计算机科学 风速 深度学习 风电预测 卷积神经网络 稳健性(进化) 数值天气预报 风力发电 人工智能 水准点(测量) 人工神经网络 统计模型 机器学习 电力系统 气象学 功率(物理) 工程类 大地测量学 地理 化学 生物化学 物理 电气工程 量子力学 基因
作者
Yiming Zhang,Hao Wang
出处
期刊:Energy [Elsevier BV]
卷期号:278: 127865-127865 被引量:81
标识
DOI:10.1016/j.energy.2023.127865
摘要

Wind energy is one of the most widely used and fastest-growing renewable energy. Wind speed prediction is an efficient way to rationally dispatch wind power generation and ensure the stability of the power system. Typical deep learning algorithms, such as the convolution neural network (CNN), long short-term memory (LSTM), and their hybrid model (CNN-LSTM), have been extensively used for time-series prediction in various fields. The CNN-LSTM model exhibits superior forecasting performance by integrating the advantages of CNN and LSTM, but it fails to quantify the forecasting uncertainty that is critical for optimal management. This study proposes a probabilistic model to forecast day-ahead wind speed based on the CNN-bidirectional LSTM (BiLSTM) and deep ensemble strategy. Unlike purely statistical methods, the hybrid physical-statistical model that combines the numerical weather prediction (NWP) model and onsite measurements is employed to improve long-term forecasting accuracy. Specifically, the probabilistic CNN-BiLSTM model is developed by adjusting the network structure, and the uncertainty is optimized through a proper scoring rule. A combination of ensembles is then used to improve the robustness of probabilistic prediction. The spatial and temporal correlations of NWP data are both considered. The new probabilistic model is applied to forecast wind speed in measurements collected from the outdoor competition venues in the 2022 Winter Olympics. Nine probabilistic benchmark methods are used to compare the performance of the proposed deep ensemble model. The results indicate that the proposed model exhibits the highest forecasting accuracy and the best ability in uncertainty estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TORGO发布了新的文献求助10
刚刚
1秒前
NexusExplorer应助awedfa采纳,获得10
1秒前
2秒前
汉堡包应助淡淡夕阳采纳,获得10
4秒前
5秒前
linlin完成签到,获得积分10
5秒前
5秒前
稳重的小霸王完成签到,获得积分10
6秒前
ling完成签到,获得积分10
6秒前
glany发布了新的文献求助30
7秒前
7秒前
7秒前
zz完成签到 ,获得积分10
7秒前
yznfly应助机灵的颜演采纳,获得30
8秒前
ding应助bububusbu采纳,获得10
8秒前
圆圆的波仔完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
shisui应助甜甜芾采纳,获得30
11秒前
littlechu发布了新的文献求助30
11秒前
dian完成签到 ,获得积分10
12秒前
linlin发布了新的文献求助10
13秒前
科研鸟发布了新的文献求助10
13秒前
lin完成签到,获得积分10
14秒前
雾海完成签到,获得积分10
15秒前
15秒前
小二郎应助燕子采纳,获得30
16秒前
16秒前
粽子发布了新的文献求助10
16秒前
雨晴完成签到,获得积分10
17秒前
在水一方应助唠嗑在呐采纳,获得10
17秒前
17秒前
18秒前
科研通AI5应助忐忑的平凡采纳,获得10
18秒前
怕黑君浩完成签到 ,获得积分10
19秒前
佳佳应助weiwei采纳,获得10
19秒前
郭伯威发布了新的文献求助20
19秒前
情怀应助TORGO采纳,获得10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966448
求助须知:如何正确求助?哪些是违规求助? 3511917
关于积分的说明 11160753
捐赠科研通 3246652
什么是DOI,文献DOI怎么找? 1793478
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403