重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Multi-head attention-based probabilistic CNN-BiLSTM for day-ahead wind speed forecasting

概率预测 概率逻辑 计算机科学 风速 深度学习 风电预测 卷积神经网络 稳健性(进化) 数值天气预报 风力发电 人工智能 水准点(测量) 人工神经网络 统计模型 机器学习 电力系统 气象学 功率(物理) 工程类 大地测量学 地理 化学 生物化学 物理 电气工程 量子力学 基因
作者
Yiming Zhang,Hao Wang
出处
期刊:Energy [Elsevier]
卷期号:278: 127865-127865 被引量:107
标识
DOI:10.1016/j.energy.2023.127865
摘要

Wind energy is one of the most widely used and fastest-growing renewable energy. Wind speed prediction is an efficient way to rationally dispatch wind power generation and ensure the stability of the power system. Typical deep learning algorithms, such as the convolution neural network (CNN), long short-term memory (LSTM), and their hybrid model (CNN-LSTM), have been extensively used for time-series prediction in various fields. The CNN-LSTM model exhibits superior forecasting performance by integrating the advantages of CNN and LSTM, but it fails to quantify the forecasting uncertainty that is critical for optimal management. This study proposes a probabilistic model to forecast day-ahead wind speed based on the CNN-bidirectional LSTM (BiLSTM) and deep ensemble strategy. Unlike purely statistical methods, the hybrid physical-statistical model that combines the numerical weather prediction (NWP) model and onsite measurements is employed to improve long-term forecasting accuracy. Specifically, the probabilistic CNN-BiLSTM model is developed by adjusting the network structure, and the uncertainty is optimized through a proper scoring rule. A combination of ensembles is then used to improve the robustness of probabilistic prediction. The spatial and temporal correlations of NWP data are both considered. The new probabilistic model is applied to forecast wind speed in measurements collected from the outdoor competition venues in the 2022 Winter Olympics. Nine probabilistic benchmark methods are used to compare the performance of the proposed deep ensemble model. The results indicate that the proposed model exhibits the highest forecasting accuracy and the best ability in uncertainty estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡卡罗特完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
刚刚
刚刚
aaaa完成签到,获得积分10
1秒前
3秒前
zhouyong完成签到,获得积分10
3秒前
浮游应助Literaturecome采纳,获得10
4秒前
masterwill发布了新的文献求助10
4秒前
lz发布了新的文献求助10
5秒前
6秒前
yafei完成签到 ,获得积分10
6秒前
dahua发布了新的文献求助30
6秒前
7秒前
7秒前
7秒前
7秒前
珂颜堂AI应助zq采纳,获得10
7秒前
Carsen完成签到,获得积分10
8秒前
8秒前
9秒前
大帅哥发布了新的文献求助10
10秒前
10秒前
风中白云发布了新的文献求助10
11秒前
11秒前
March3完成签到 ,获得积分10
12秒前
12秒前
可爱的函函应助masterwill采纳,获得10
12秒前
13秒前
doranlou发布了新的文献求助30
13秒前
想要每天睡到自然醒完成签到,获得积分10
13秒前
13秒前
14秒前
15秒前
情怀应助fisher采纳,获得20
15秒前
x仙贝发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
Zosty发布了新的文献求助10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465838
求助须知:如何正确求助?哪些是违规求助? 4570083
关于积分的说明 14322455
捐赠科研通 4496549
什么是DOI,文献DOI怎么找? 2463392
邀请新用户注册赠送积分活动 1452295
关于科研通互助平台的介绍 1427497