Multi-head attention-based probabilistic CNN-BiLSTM for day-ahead wind speed forecasting

概率预测 概率逻辑 计算机科学 风速 深度学习 风电预测 卷积神经网络 稳健性(进化) 数值天气预报 风力发电 人工智能 水准点(测量) 人工神经网络 统计模型 机器学习 电力系统 气象学 功率(物理) 工程类 大地测量学 地理 化学 生物化学 物理 电气工程 量子力学 基因
作者
Yiming Zhang,Hao Wang
出处
期刊:Energy [Elsevier]
卷期号:278: 127865-127865 被引量:107
标识
DOI:10.1016/j.energy.2023.127865
摘要

Wind energy is one of the most widely used and fastest-growing renewable energy. Wind speed prediction is an efficient way to rationally dispatch wind power generation and ensure the stability of the power system. Typical deep learning algorithms, such as the convolution neural network (CNN), long short-term memory (LSTM), and their hybrid model (CNN-LSTM), have been extensively used for time-series prediction in various fields. The CNN-LSTM model exhibits superior forecasting performance by integrating the advantages of CNN and LSTM, but it fails to quantify the forecasting uncertainty that is critical for optimal management. This study proposes a probabilistic model to forecast day-ahead wind speed based on the CNN-bidirectional LSTM (BiLSTM) and deep ensemble strategy. Unlike purely statistical methods, the hybrid physical-statistical model that combines the numerical weather prediction (NWP) model and onsite measurements is employed to improve long-term forecasting accuracy. Specifically, the probabilistic CNN-BiLSTM model is developed by adjusting the network structure, and the uncertainty is optimized through a proper scoring rule. A combination of ensembles is then used to improve the robustness of probabilistic prediction. The spatial and temporal correlations of NWP data are both considered. The new probabilistic model is applied to forecast wind speed in measurements collected from the outdoor competition venues in the 2022 Winter Olympics. Nine probabilistic benchmark methods are used to compare the performance of the proposed deep ensemble model. The results indicate that the proposed model exhibits the highest forecasting accuracy and the best ability in uncertainty estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
称心问枫完成签到,获得积分10
刚刚
刚刚
Heisnn完成签到,获得积分10
刚刚
2秒前
研友_Z60x5L发布了新的文献求助20
2秒前
JamesPei应助仓颉采纳,获得10
2秒前
zzk完成签到,获得积分10
3秒前
3秒前
3秒前
烟花应助黎乐荷采纳,获得10
3秒前
Tamarin发布了新的文献求助10
3秒前
CodeCraft应助子衿采纳,获得30
3秒前
generaliu发布了新的文献求助10
3秒前
oula完成签到,获得积分10
4秒前
幸福胡萝卜完成签到,获得积分10
4秒前
4秒前
Stella应助闪闪的斌采纳,获得30
4秒前
善学以致用应助是琳啦采纳,获得10
5秒前
赘婿应助taotie采纳,获得20
5秒前
kekao完成签到,获得积分10
5秒前
研友_VZG7GZ应助光亮白山采纳,获得10
5秒前
怡然思萱完成签到 ,获得积分10
5秒前
CodeCraft应助活力的之槐采纳,获得10
5秒前
NexusExplorer应助tansl1989采纳,获得10
5秒前
香蕉觅云应助轮子采纳,获得10
5秒前
6秒前
6秒前
EGL完成签到,获得积分10
6秒前
iCorn完成签到,获得积分10
6秒前
7秒前
怕孤单的听枫完成签到,获得积分10
7秒前
烟花应助丁丁丁采纳,获得10
7秒前
科研通AI6应助lanchong采纳,获得10
7秒前
山后别相逢完成签到 ,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
9秒前
阿威想躺平完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396591
求助须知:如何正确求助?哪些是违规求助? 4516960
关于积分的说明 14061977
捐赠科研通 4428852
什么是DOI,文献DOI怎么找? 2432178
邀请新用户注册赠送积分活动 1424542
关于科研通互助平台的介绍 1403644