亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimizing Job Offloading Schedule for Collaborative DNN Inference

计算机科学 推论 调度(生产过程) 试验台 分布式计算 人工智能 计算机网络 数学优化 数学
作者
Yubin Duan,Jie Wu
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:23 (4): 3436-3451 被引量:8
标识
DOI:10.1109/tmc.2023.3276937
摘要

Deep Neural Networks (DNNs) have been widely deployed in mobile applications. DNN inference latency is a critical metric to measure the service quality of those applications. Collaborative inference is a promising approach for latency optimization, where partial inference workloads are offloaded from mobile devices to cloud servers. Model partition problems for collaborative inference have been well studied. However, little attention has been paid to optimizing offloading pipeline for multiple DNN inference jobs. In practice, mobile devices usually need to process multiple DNN inference jobs simultaneously. We propose to jointly optimize the DNN partitioning and pipeline scheduling for multiple inference jobs. We theoretically analyze the optimal scheduling conditions for homogeneous chain-structure DNNs. Based on the analysis, we proposed near-optimal partitioning and scheduling methods for chain-structure DNNs. We also extend those methods for general-structure DNNs. In addition, we extend our problem scenario to handle heterogeneous DNN inference jobs. A layer-level scheduling algorithm is proposed. Theoretical analyses show that our proposed method is optimal when computation graphs are tree-structure. Our joint optimization methods are evaluated in a real-world testbed. Experiment results show that our methods can significantly reduce the overall inference latency of multiple inference jobs compared to partition-only or schedule-only approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
7秒前
爆米花应助冬虫夏草采纳,获得10
9秒前
潘名超完成签到,获得积分10
10秒前
橙汁发布了新的文献求助10
12秒前
六六六完成签到 ,获得积分10
13秒前
14秒前
17秒前
18秒前
Ava应助陈陈要毕业采纳,获得10
18秒前
大模型应助橙汁采纳,获得10
19秒前
冬虫夏草发布了新的文献求助10
21秒前
jar7989发布了新的文献求助10
24秒前
DOO完成签到,获得积分10
24秒前
26秒前
Criminology34应助Ww采纳,获得10
28秒前
29秒前
kdjc完成签到 ,获得积分10
30秒前
JAMAaccepted发布了新的文献求助10
31秒前
hjjjj发布了新的文献求助10
32秒前
若宫伊芙应助科研通管家采纳,获得10
33秒前
若宫伊芙应助科研通管家采纳,获得10
33秒前
若宫伊芙应助科研通管家采纳,获得10
33秒前
33秒前
若宫伊芙应助科研通管家采纳,获得10
33秒前
fangdonghai发布了新的文献求助10
33秒前
所所应助hjjjj采纳,获得10
42秒前
43秒前
43秒前
jar7989完成签到,获得积分10
44秒前
ljh024完成签到,获得积分10
51秒前
57秒前
尚尚发布了新的文献求助10
1分钟前
1分钟前
Raunio完成签到,获得积分10
1分钟前
是榤啊完成签到 ,获得积分10
1分钟前
震动的平松完成签到 ,获得积分10
1分钟前
JamesPei应助执着的忆曼采纳,获得30
1分钟前
ANKAR完成签到,获得积分10
1分钟前
今后应助尚尚采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664034
求助须知:如何正确求助?哪些是违规求助? 4856893
关于积分的说明 15107044
捐赠科研通 4822496
什么是DOI,文献DOI怎么找? 2581475
邀请新用户注册赠送积分活动 1535694
关于科研通互助平台的介绍 1493921