Development of machine learning models aiming at knee osteoarthritis diagnosing: an MRI radiomics analysis

接收机工作特性 医学 特征选择 磁共振成像 Lasso(编程语言) 组内相关 支持向量机 骨关节炎 人工智能 逻辑回归 无线电技术 机器学习 模式识别(心理学) 再现性 放射科 核医学 计算机科学 统计 数学 病理 内科学 万维网 替代医学
作者
Tingrun Cui,R. Liu,Jing Yang,Jun Fu,Jiying Chen
出处
期刊:Journal of Orthopaedic Surgery and Research [Springer Nature]
卷期号:18 (1) 被引量:2
标识
DOI:10.1186/s13018-023-03837-y
摘要

Abstract Background To develop and assess the performance of machine learning (ML) models based on magnetic resonance imaging (MRI) radiomics analysis for knee osteoarthritis (KOA) diagnosis. Methods This retrospective study analysed 148 consecutive patients (72 with KOA and 76 without) with available MRI image data, where radiomics features in cartilage portions were extracted and then filtered. Intraclass correlation coefficient (ICC) was calculated to quantify the reproducibility of features, and a threshold of 0.8 was set. The training and validation cohorts consisted of 117 and 31 cases, respectively. Least absolute shrinkage and selection operator (LASSO) regression method was employed for feature selection. The ML classifiers were logistic regression (LR), K-nearest neighbour (KNN) and support vector machine (SVM). In each algorithm, ten models derived from all available planes of three joint compartments and their various combinations were, respectively, constructed for comparative analysis. The performance of classifiers was mainly evaluated and compared by receiver operating characteristic (ROC) analysis. Results All models achieved satisfying performances, especially the Final model, where accuracy and area under ROC curve (AUC) of LR classifier were 0.968, 0.983 (0.957–1.000, 95% CI) in the validation cohort, and 0.940, 0.984 (0.969–0.995, 95% CI) in the training cohort, respectively. Conclusion The MRI radiomics analysis represented promising performance in noninvasive and preoperative KOA diagnosis, especially when considering all available planes of all three compartments of knee joints.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陶喆完成签到,获得积分10
3秒前
Eric完成签到 ,获得积分10
3秒前
3秒前
Eric关注了科研通微信公众号
8秒前
油麦完成签到 ,获得积分10
9秒前
田様应助马上秃头采纳,获得10
12秒前
12秒前
王代灵完成签到,获得积分10
14秒前
醉熏的百合完成签到,获得积分10
17秒前
laodsy完成签到,获得积分10
18秒前
robotJ完成签到,获得积分10
18秒前
池鱼完成签到,获得积分10
18秒前
Alley完成签到 ,获得积分10
20秒前
zhishiyanhua给zhishiyanhua的求助进行了留言
22秒前
22秒前
rrrick发布了新的文献求助10
22秒前
小黄同学发布了新的文献求助10
25秒前
Sunshine完成签到,获得积分10
25秒前
26秒前
学谦完成签到,获得积分10
26秒前
26秒前
科研通AI2S应助Alley采纳,获得10
29秒前
LFJ完成签到,获得积分10
31秒前
ly完成签到,获得积分10
32秒前
爆米花应助LLC采纳,获得10
32秒前
小黄同学完成签到,获得积分10
35秒前
黑釉龙鲤完成签到,获得积分10
36秒前
YK完成签到,获得积分20
37秒前
鱿鱼关注了科研通微信公众号
37秒前
39秒前
40秒前
mokosk完成签到,获得积分10
40秒前
LLC完成签到,获得积分10
40秒前
41秒前
41秒前
LLC发布了新的文献求助10
44秒前
深情安青应助科研通管家采纳,获得10
47秒前
小二郎应助科研通管家采纳,获得10
47秒前
上官若男应助科研通管家采纳,获得10
47秒前
嘎嘎嘎嘎应助科研通管家采纳,获得10
47秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163007
求助须知:如何正确求助?哪些是违规求助? 2813990
关于积分的说明 7902812
捐赠科研通 2473633
什么是DOI,文献DOI怎么找? 1316952
科研通“疑难数据库(出版商)”最低求助积分说明 631560
版权声明 602187