Development of machine learning models aiming at knee osteoarthritis diagnosing: an MRI radiomics analysis

接收机工作特性 医学 特征选择 磁共振成像 Lasso(编程语言) 组内相关 支持向量机 骨关节炎 人工智能 逻辑回归 无线电技术 机器学习 模式识别(心理学) 再现性 放射科 核医学 计算机科学 统计 数学 病理 内科学 万维网 替代医学
作者
Tingrun Cui,R. Liu,Jing Yang,Jun Fu,Jiying Chen
出处
期刊:Journal of Orthopaedic Surgery and Research [Springer Nature]
卷期号:18 (1) 被引量:2
标识
DOI:10.1186/s13018-023-03837-y
摘要

Abstract Background To develop and assess the performance of machine learning (ML) models based on magnetic resonance imaging (MRI) radiomics analysis for knee osteoarthritis (KOA) diagnosis. Methods This retrospective study analysed 148 consecutive patients (72 with KOA and 76 without) with available MRI image data, where radiomics features in cartilage portions were extracted and then filtered. Intraclass correlation coefficient (ICC) was calculated to quantify the reproducibility of features, and a threshold of 0.8 was set. The training and validation cohorts consisted of 117 and 31 cases, respectively. Least absolute shrinkage and selection operator (LASSO) regression method was employed for feature selection. The ML classifiers were logistic regression (LR), K-nearest neighbour (KNN) and support vector machine (SVM). In each algorithm, ten models derived from all available planes of three joint compartments and their various combinations were, respectively, constructed for comparative analysis. The performance of classifiers was mainly evaluated and compared by receiver operating characteristic (ROC) analysis. Results All models achieved satisfying performances, especially the Final model, where accuracy and area under ROC curve (AUC) of LR classifier were 0.968, 0.983 (0.957–1.000, 95% CI) in the validation cohort, and 0.940, 0.984 (0.969–0.995, 95% CI) in the training cohort, respectively. Conclusion The MRI radiomics analysis represented promising performance in noninvasive and preoperative KOA diagnosis, especially when considering all available planes of all three compartments of knee joints.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dududu发布了新的文献求助10
刚刚
lingling完成签到,获得积分20
刚刚
刚刚
量子星尘发布了新的文献求助10
刚刚
刚刚
天天快乐应助newRamir采纳,获得10
刚刚
罗胖胖完成签到 ,获得积分10
1秒前
细腻灵发布了新的文献求助10
1秒前
memorise完成签到,获得积分10
1秒前
2秒前
2秒前
容二遥完成签到,获得积分20
2秒前
自信河马发布了新的文献求助10
2秒前
歪歪发布了新的文献求助10
3秒前
英姑应助云止采纳,获得10
3秒前
这个人巨爱学习完成签到,获得积分10
4秒前
FashionBoy应助llj采纳,获得10
4秒前
4秒前
容二遥发布了新的文献求助10
5秒前
大模型应助方方方方方采纳,获得10
5秒前
5秒前
wwwewqe完成签到 ,获得积分20
5秒前
regene完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
向阳发布了新的文献求助10
6秒前
jisean完成签到,获得积分10
6秒前
zzz关闭了zzz文献求助
8秒前
所所应助科研大捞采纳,获得10
8秒前
自信河马完成签到,获得积分10
9秒前
rqtq2完成签到,获得积分10
9秒前
9秒前
柏果完成签到,获得积分10
10秒前
浅蓝完成签到 ,获得积分10
10秒前
淮竹发布了新的文献求助10
10秒前
孙宇完成签到,获得积分10
10秒前
10秒前
哈哈哈发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718656
求助须知:如何正确求助?哪些是违规求助? 5253667
关于积分的说明 15286658
捐赠科研通 4868722
什么是DOI,文献DOI怎么找? 2614394
邀请新用户注册赠送积分活动 1564266
关于科研通互助平台的介绍 1521785