清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development of machine learning models aiming at knee osteoarthritis diagnosing: an MRI radiomics analysis

接收机工作特性 医学 特征选择 磁共振成像 Lasso(编程语言) 组内相关 支持向量机 骨关节炎 人工智能 逻辑回归 无线电技术 机器学习 模式识别(心理学) 再现性 放射科 核医学 计算机科学 统计 数学 病理 内科学 万维网 替代医学
作者
Tingrun Cui,R. Liu,Jing Yang,Jun Fu,Jiying Chen
出处
期刊:Journal of Orthopaedic Surgery and Research [BioMed Central]
卷期号:18 (1) 被引量:2
标识
DOI:10.1186/s13018-023-03837-y
摘要

Abstract Background To develop and assess the performance of machine learning (ML) models based on magnetic resonance imaging (MRI) radiomics analysis for knee osteoarthritis (KOA) diagnosis. Methods This retrospective study analysed 148 consecutive patients (72 with KOA and 76 without) with available MRI image data, where radiomics features in cartilage portions were extracted and then filtered. Intraclass correlation coefficient (ICC) was calculated to quantify the reproducibility of features, and a threshold of 0.8 was set. The training and validation cohorts consisted of 117 and 31 cases, respectively. Least absolute shrinkage and selection operator (LASSO) regression method was employed for feature selection. The ML classifiers were logistic regression (LR), K-nearest neighbour (KNN) and support vector machine (SVM). In each algorithm, ten models derived from all available planes of three joint compartments and their various combinations were, respectively, constructed for comparative analysis. The performance of classifiers was mainly evaluated and compared by receiver operating characteristic (ROC) analysis. Results All models achieved satisfying performances, especially the Final model, where accuracy and area under ROC curve (AUC) of LR classifier were 0.968, 0.983 (0.957–1.000, 95% CI) in the validation cohort, and 0.940, 0.984 (0.969–0.995, 95% CI) in the training cohort, respectively. Conclusion The MRI radiomics analysis represented promising performance in noninvasive and preoperative KOA diagnosis, especially when considering all available planes of all three compartments of knee joints.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
54秒前
58秒前
ceeray23发布了新的文献求助20
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Krim完成签到 ,获得积分10
2分钟前
我有我风格完成签到 ,获得积分10
2分钟前
Akim应助George采纳,获得10
2分钟前
babalala完成签到,获得积分10
2分钟前
我是笨蛋完成签到 ,获得积分10
2分钟前
Virtual应助babalala采纳,获得20
2分钟前
大医仁心完成签到 ,获得积分10
2分钟前
2分钟前
呆呆的猕猴桃完成签到 ,获得积分10
2分钟前
TheaGao完成签到 ,获得积分0
2分钟前
George发布了新的文献求助10
2分钟前
踏实数据线完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
Benhnhk21完成签到,获得积分10
4分钟前
红枫没有微雨怜完成签到 ,获得积分10
4分钟前
慕青应助dcm采纳,获得10
5分钟前
瘦瘦的枫叶完成签到 ,获得积分10
6分钟前
wythu16完成签到,获得积分10
6分钟前
星辰大海应助Carlos_Soares采纳,获得10
6分钟前
老石完成签到 ,获得积分10
6分钟前
开心的瘦子完成签到,获得积分10
6分钟前
6分钟前
JAYZHANG完成签到,获得积分10
7分钟前
Carlos_Soares发布了新的文献求助10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
大个应助科研通管家采纳,获得10
7分钟前
大模型应助科研通管家采纳,获得20
7分钟前
Carlos_Soares完成签到,获得积分10
7分钟前
maher完成签到 ,获得积分10
7分钟前
7分钟前
asda发布了新的文献求助10
7分钟前
asda完成签到,获得积分20
7分钟前
呆鸥完成签到,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4612350
求助须知:如何正确求助?哪些是违规求助? 4017599
关于积分的说明 12436515
捐赠科研通 3699718
什么是DOI,文献DOI怎么找? 2040286
邀请新用户注册赠送积分活动 1073108
科研通“疑难数据库(出版商)”最低求助积分说明 956819