Drug synergy model for malignant diseases using deep learning

药品 机器学习 人工智能 计算机科学 药物重新定位 医学 药理学
作者
Pooja Rani,Kamlesh Dutta,Vijay Kumar
出处
期刊:Journal of Bioinformatics and Computational Biology [World Scientific]
卷期号:21 (03)
标识
DOI:10.1142/s0219720023500142
摘要

Drug synergy has emerged as a viable treatment option for malignancy. Drug synergy reduces toxicity, improves therapeutic efficacy, and overcomes drug resistance when compared to single-drug doses. Thus, it has attained significant interest from academics and pharmaceutical organizations. Due to the enormous combinatorial search space, it is impossible to experimentally validate every conceivable combination for synergistic interaction. Due to advancement in artificial intelligence, the computational techniques are being utilized to identify synergistic drug combinations, whereas prior literature has focused on treating certain malignancies. As a result, high-order drug combinations have been given little consideration. Here, DrugSymby, a novel deep-learning model is proposed for predicting drug combinations. To achieve this objective, the data is collected from datasets that include information on anti-cancer drugs, gene expression profiles of malignant cell lines, and screening data against a wide range of malignant cell lines. The proposed model was developed using this data and achieved high performance with f1-score of 0.98, recall of 0.99, and precision of 0.98. The evaluation results of DrugSymby model utilizing drug combination screening data from the NCI-ALMANAC screening dataset indicate drug combination prediction is effective. The proposed model will be used to determine the most successful synergistic drug combinations, and also increase the possibilities of exploring new drug combinations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
旺旺老师发布了新的文献求助10
1秒前
优雅的化蛹完成签到,获得积分10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
Candice应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
隐形曼青应助称心奇迹采纳,获得30
5秒前
monned完成签到 ,获得积分10
8秒前
11秒前
半颗糖完成签到 ,获得积分10
11秒前
冷酷的听白关注了科研通微信公众号
13秒前
simon完成签到,获得积分10
14秒前
16秒前
Drwang发布了新的文献求助10
16秒前
17秒前
Jepsen完成签到 ,获得积分10
17秒前
majar关注了科研通微信公众号
19秒前
李健应助hql_sdu采纳,获得10
20秒前
香蕉觅云应助酷炫小笼包采纳,获得10
21秒前
21秒前
小蘑菇应助旺旺老师采纳,获得10
21秒前
21秒前
22秒前
梦锂铧发布了新的文献求助10
22秒前
23秒前
25秒前
elysia完成签到 ,获得积分10
25秒前
26秒前
研友_VZG7GZ应助超帅的以彤采纳,获得10
27秒前
ZYM完成签到,获得积分10
28秒前
星辰大海应助Drwang采纳,获得10
29秒前
hql_sdu发布了新的文献求助10
29秒前
30秒前
自由南珍完成签到,获得积分20
31秒前
枵蕾发布了新的文献求助10
33秒前
碳水大王发布了新的文献求助10
35秒前
jqk完成签到,获得积分10
36秒前
1LDan完成签到,获得积分10
36秒前
Drwang完成签到,获得积分10
36秒前
CodeCraft应助ddd采纳,获得10
40秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Very-high-order BVD Schemes Using β-variable THINC Method 990
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3396239
求助须知:如何正确求助?哪些是违规求助? 3006086
关于积分的说明 8819516
捐赠科研通 2693149
什么是DOI,文献DOI怎么找? 1475149
科研通“疑难数据库(出版商)”最低求助积分说明 682393
邀请新用户注册赠送积分活动 675566