摩擦电效应
纳米发生器
材料科学
碳纳米管
纳米复合材料
纳米技术
复合材料
导电体
制作
医学
替代医学
病理
压电
作者
Jaehee Shin,Sungho Ji,Hanchul Cho,Jinhyoung Park
出处
期刊:Polymers
[MDPI AG]
日期:2023-02-24
卷期号:15 (5): 1135-1135
被引量:9
标识
DOI:10.3390/polym15051135
摘要
The rapid development of portable and wearable electronic devices has led researchers to actively study triboelectric nanogenerators (TENGs) that can provide self-powering capabilities. In this study, we propose a highly flexible and stretchable sponge-type TENG, named flexible conductive sponge triboelectric nanogenerator (FCS-TENG), which consists of a porous structure manufactured by inserting carbon nanotubes (CNTs) into silicon rubber using sugar particles. Nanocomposite fabrication processes, such as template-directed CVD and ice freeze casting methods for fabricating porous structures, are very complex and costly. However, the nanocomposite manufacturing process of flexible conductive sponge triboelectric nanogenerators is simple and inexpensive. In the tribo-negative CNT/silicone rubber nanocomposite, the CNTs act as electrodes, increasing the contact area between the two triboelectric materials, increasing the charge density, and improving charge transfer between the two phases. Measurements of the performance of flexible conductive sponge triboelectric nanogenerators using an oscilloscope and a linear motor, under a driving force of 2-7 N, show that it generates an output voltage of up to 1120 V and a current of 25.6 µA. In addition, by using different weight percentages of carbon nanotubes (CNTs), it is shown that the output power increases with the weight percentage of carbon nanotubes (CNTs). The flexible conductive sponge triboelectric nanogenerator not only exhibits good performance and mechanical robustness but can also be directly used in light-emitting diodes connected in series. Furthermore, its output remains extremely stable even after 1000 bending cycles in an ambient environment. In sum, the results demonstrate that flexible conductive sponge triboelectric nanogenerators can effectively power small electronics and contribute to large-scale energy harvesting.
科研通智能强力驱动
Strongly Powered by AbleSci AI