Controlled Growth of Semiconducting ZnO Nanorods for Piezoelectric Energy Harvesting-Based Nanogenerators

纳米棒 压电 纳米发生器 材料科学 压电响应力显微镜 能量收集 压电系数 纳米技术 光电子学 机械能 半导体 电场 纳米结构 能量(信号处理) 铁电性 复合材料 电介质 数学 功率(物理) 物理 统计 量子力学
作者
Shamsu Abubakar,Sin Tee Tan,Josephine Ying Chyi Liew,Zainal Abidin Talib,Ramsundar Sivasubramanian,Chockalingam Aravind Vaithilingam,Sridhar Sripadmanabhan Indira,Won‐Chun Oh,Rikson Siburian,Suresh Sagadevan,Suriati Paiman
出处
期刊:Nanomaterials [MDPI AG]
卷期号:13 (6): 1025-1025 被引量:5
标识
DOI:10.3390/nano13061025
摘要

Zinc oxide (ZnO) nanorods have attracted considerable attention in recent years owing to their piezoelectric properties and potential applications in energy harvesting, sensing, and nanogenerators. Piezoelectric energy harvesting-based nanogenerators have emerged as promising new devices capable of converting mechanical energy into electric energy via nanoscale characterizations such as piezoresponse force microscopy (PFM). This technique was used to study the piezoresponse generated when an electric field was applied to the nanorods using a PFM probe. However, this work focuses on intensive studies that have been reported on the synthesis of ZnO nanostructures with controlled morphologies and their subsequent influence on piezoelectric nanogenerators. It is important to note that the diatomic nature of zinc oxide as a potential solid semiconductor and its electromechanical influence are the two main phenomena that drive the mechanism of any piezoelectric device. The results of our findings confirm that the performance of piezoelectric devices can be significantly improved by controlling the morphology and initial growth conditions of ZnO nanorods, particularly in terms of the magnitude of the piezoelectric coefficient factor (d33). Moreover, from this review, a proposed facile synthesis of ZnO nanorods, suitably produced to improve coupling and switchable polarization in piezoelectric devices, has been reported.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
茉莉雨完成签到 ,获得积分10
1秒前
2393843435发布了新的文献求助10
2秒前
3秒前
3秒前
木偶发布了新的文献求助10
3秒前
4秒前
打打应助knight采纳,获得10
4秒前
4秒前
平淡的懿轩完成签到,获得积分10
5秒前
Williamliu完成签到,获得积分10
5秒前
思源应助123采纳,获得10
6秒前
童年的回忆klwqqt完成签到,获得积分10
7秒前
田様应助NZH采纳,获得10
7秒前
loros发布了新的文献求助10
7秒前
Mai发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
11秒前
八段锦发布了新的文献求助10
11秒前
大威德发布了新的文献求助10
12秒前
CipherSage应助jdwxiang123采纳,获得10
12秒前
毛男完成签到,获得积分10
13秒前
呆瓜不呆完成签到,获得积分10
13秒前
我要灌篮完成签到,获得积分10
14秒前
xxx完成签到,获得积分10
14秒前
Kooper发布了新的文献求助10
15秒前
15秒前
善学以致用应助科研达人采纳,获得10
15秒前
17秒前
17秒前
在水一方应助一闪一闪采纳,获得10
17秒前
xxx发布了新的文献求助10
19秒前
Lucas应助彩色丸子采纳,获得10
20秒前
秋秋完成签到,获得积分10
20秒前
昵称不填完成签到,获得积分10
21秒前
宵宵完成签到,获得积分10
21秒前
彭于晏应助聪明小黄采纳,获得10
21秒前
酷酷发布了新的文献求助10
22秒前
无敌鱼发布了新的文献求助10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553842
求助须知:如何正确求助?哪些是违规求助? 3129593
关于积分的说明 9383508
捐赠科研通 2828757
什么是DOI,文献DOI怎么找? 1555168
邀请新用户注册赠送积分活动 725867
科研通“疑难数据库(出版商)”最低求助积分说明 715320