Interfacial Colloidal Self-Assembly for Functional Materials

纳米技术 材料科学 纳米颗粒 单层 石墨烯 拉曼散射 生物传感器 碳纳米管 自组装 胶体金 拉曼光谱 物理 光学
作者
Shuai Hou,Ling Bai,Derong Lu,Hongwei Duan
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:56 (7): 740-751 被引量:25
标识
DOI:10.1021/acs.accounts.2c00705
摘要

ConspectusSelf-assembly bridges nanoscale and microscale colloidal particles into macroscale functional materials. In particular, self-assembly processes occurring at the liquid/liquid or solid/liquid/air interfaces hold great promise in constructing large-scale two- or three-dimensional (2D or 3D) architectures. Interaction of colloidal particles in the assemblies leads to emergent collective properties not found in individual building blocks, offering a much larger parameter space to tune the material properties. Interfacial self-assembly methods are rapid, cost-effective, scalable, and compatible with existing fabrication technologies, thus promoting widespread interest in a broad range of research fields.Surface chemistry of nanoparticles plays a predominant role in driving the self-assembly of nanoparticles at water/oil interfaces. Amphiphilic nanoparticles coated with mixed polymer brushes or mussel-inspired polydopamine were demonstrated to self-assemble into closely packed thin films, enabling diverse applications from electrochemical sensors and catalysis to surface-enhanced optical properties. Interfacial assemblies of amphiphilic gold nanoparticles were integrated with graphene paper to obtain flexible electrodes in a modular approach. The robust, biocompatible electrodes with exceptional electrocatalytic activities showed excellent sensitivity and reproducibility in biosensing. Recyclable catalysts were prepared by transferring monolayer assemblies of polydopamine-coated nanocatalysts to both hydrophilic and hydrophobic substrates. The immobilized catalysts were easily recovered and recycled without loss of catalytic activity. Plasmonic nanoparticles were self-assembled into a plasmonic substrate for surface-enhanced Raman scattering, metal-enhanced fluorescence, and modulated fluorescence resonance energy transfer (FRET). Strong Raman enhancement was accomplished by rationally directing the Raman probes to the electromagnetic hotspots. Optimal enhancement of fluorescence and FRET was realized by precisely controlling the spacing between the metal surface and the fluorophores and tuning the surface plasmon resonance wavelength of the self-assembled substrate to match the optical properties of the fluorescent dye.At liquid/solid interfaces, infiltration-assisted (IFAST) colloidal self-assembly introduces liquid infiltration in the substrate as a new factor to control the degree of order of the colloidal assemblies. The strong infiltration flow leads to the formation of amorphous colloidal arrays that display noniridescent structural colors. This method is compatible with a broad range of colloidal particle inks, and any solid substrate that is permeable to dispersing liquids but particle-excluding is suitable for IFAST colloidal assembly. Therefore, the IFAST technology offers rapid, scalable fabrication of structural color patterns of diverse colloidal particles with full-spectrum coverage and unprecedented flexibility. Metal-organic framework particles with either spherical or polyhedral morphology were used as ink particles in the Mayer rod coating on wettability patterned photopapers, leading to amorphous photonic structures with vapor-responsive colors. Anticounterfeiting labels have also been developed based on the complex optical features encoded in the photonic structures.Interfacial colloidal self-assembly at the water/oil interface and IFAST assembly at the solid/liquid/air interface have proven to be versatile fabrication platforms to produce functional materials with well-defined properties for diverse applications. These platform technologies are promising in the manufacturing of value-added functional materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
乐乐应助学海无涯采纳,获得10
1秒前
wxd完成签到,获得积分10
1秒前
嗯嗯嗯完成签到,获得积分10
2秒前
yf_zhu关注了科研通微信公众号
2秒前
mtfx完成签到 ,获得积分10
2秒前
2秒前
帅气惜霜给帅气惜霜的求助进行了留言
2秒前
2秒前
3秒前
3秒前
4秒前
龙华之士发布了新的文献求助10
4秒前
bc完成签到,获得积分10
5秒前
H71000A发布了新的文献求助10
5秒前
dollarpuff完成签到,获得积分10
5秒前
科研通AI5应助当时明月在采纳,获得10
5秒前
yipyip完成签到,获得积分20
5秒前
Lxxixixi发布了新的文献求助10
6秒前
6秒前
润润轩轩发布了新的文献求助10
7秒前
lichaoyes发布了新的文献求助10
8秒前
王王的狗子完成签到 ,获得积分10
8秒前
zjuroc发布了新的文献求助20
8秒前
9秒前
浅笑发布了新的文献求助10
9秒前
文艺明杰发布了新的文献求助10
9秒前
9秒前
炙热冰夏发布了新的文献求助10
9秒前
9秒前
大意的青槐完成签到,获得积分10
10秒前
10秒前
nalan完成签到,获得积分10
10秒前
NN应助影子采纳,获得10
10秒前
天真思雁完成签到 ,获得积分10
11秒前
在水一方应助火星上白羊采纳,获得10
11秒前
小吕完成签到,获得积分10
12秒前
12秒前
wanci应助科研CY采纳,获得10
12秒前
Lxxixixi完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762