亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automation and deep (machine) learning in temporomandibular joint disorder radiomics: A systematic review

人工智能 医学 机器学习 梅德林 医学物理学 检查表 颞下颌关节 批判性评价 深度学习 物理疗法 放射科 计算机科学 口腔正畸科 病理 心理学 替代医学 政治学 法学 认知心理学
作者
Taseef Hasan Farook,James Dudley
出处
期刊:Journal of Oral Rehabilitation [Wiley]
卷期号:50 (6): 501-521 被引量:23
标识
DOI:10.1111/joor.13440
摘要

Abstract Objective This review aimed to systematically analyse the influence of clinical variables, diagnostic parameters and the overall image acquisition process on automation and deep learning in TMJ disorders. Methods Articles were screened in late 2022 according to a predefined eligibility criteria adhering to the PRISMA protocol. Eligible studies were extracted from databases hosted by MEDLINE, EBSCOHost, Scopus, PubMed and Web of Science. Critical appraisals were performed on individual studies following Nature Medicine's MI‐CLAIM checklist while a combined appraisal of the image acquisition procedures was conducted using Cochrane's GRADE approach. Results Twenty articles were included for full review following eligibility screening. The average experience possessed by the clinical operators within the eligible studies was 13.7 years. Bone volume, trabecular number and separation, and bone surface‐to‐volume ratio were clinical radiographic parameters while disc shape, signal intensity, fluid collection, joint space narrowing and arthritic changes were successful parameters used in MRI‐based deep machine learning. Entropy was correlated to sclerosis in CBCT and was the most stable radiomic parameter in MRI while contrast was the least stable across thermography and MRI. Adjunct serum and salivary biomarkers, or clinical questionnaires only marginally improved diagnostic outcomes through deep learning. Substantial data was classified as unusable and subsequently discarded owing to a combination of suboptimal image acquisition and data augmentation procedures. Inadequate identification of the participant characteristics and multiple studies utilising the same dataset and data acquisition procedures accounted for serious risks of bias. Conclusion Deep‐learned models diagnosed osteoarthritis as accurately as clinicians from 2D and 3D radiographs but, in comparison, performed poorly when detecting disc disorders from MRI datasets. Complexities in clinical classification criteria; non‐standardised diagnostic parameters; errors in image acquisition; cognitive, contextual or implicit biases were influential variables that generally affected analyses of inflammatory joint changes and disc disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13134发布了新的文献求助10
9秒前
FashionBoy应助眰恦采纳,获得10
10秒前
wujiwuhui完成签到 ,获得积分10
14秒前
大学生完成签到 ,获得积分10
17秒前
13134完成签到,获得积分10
19秒前
孤独蘑菇完成签到 ,获得积分10
23秒前
37秒前
壮观的谷冬完成签到 ,获得积分10
51秒前
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
寻道图强应助科研通管家采纳,获得30
1分钟前
1分钟前
1分钟前
yaoyao发布了新的文献求助10
1分钟前
1分钟前
1分钟前
眰恦发布了新的文献求助10
1分钟前
搜集达人应助laochuangzi2hao采纳,获得10
1分钟前
yaoyao发布了新的文献求助10
1分钟前
Vision820发布了新的文献求助10
1分钟前
完美世界应助嘎嘎的鸡神采纳,获得10
1分钟前
1分钟前
qiu发布了新的文献求助10
1分钟前
呆萌安青完成签到 ,获得积分10
1分钟前
顾矜应助遥感小虫采纳,获得10
1分钟前
虚心的人雄完成签到 ,获得积分10
1分钟前
1分钟前
拟好发布了新的文献求助10
1分钟前
派大星发布了新的文献求助10
1分钟前
遥感小虫发布了新的文献求助10
2分钟前
科研通AI2S应助yaoyao采纳,获得10
2分钟前
思源应助yaoyao采纳,获得10
2分钟前
春鸮鸟完成签到 ,获得积分10
2分钟前
2分钟前
YJH完成签到,获得积分10
2分钟前
Airi完成签到,获得积分10
2分钟前
2分钟前
杀殿完成签到 ,获得积分10
2分钟前
2分钟前
猪蹄烧得不错完成签到,获得积分10
2分钟前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164729
求助须知:如何正确求助?哪些是违规求助? 2815800
关于积分的说明 7910376
捐赠科研通 2475414
什么是DOI,文献DOI怎么找? 1318135
科研通“疑难数据库(出版商)”最低求助积分说明 632011
版权声明 602282