Knee Osteoarthritis Detection Using an Improved CenterNet With Pixel-Wise Voting Scheme

计算机科学 人工智能 特征提取 像素 最小边界框 模式识别(心理学) 跳跃式监视 加权投票 投票 计算机视觉 特征(语言学) 图像(数学) 哲学 政治 语言学 法学 政治学
作者
Suliman Aladhadh,Rabbia Mahum
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 22283-22296
标识
DOI:10.1109/access.2023.3247502
摘要

To detect knee disease, radiologists have been utilizing multi-view images such as computer tomography (CT) scans, MRIs, and X-rays. The cheapest method is X-ray to attain the images that is used widely. There exist various image processing techniques to detect knee disease at the initial stages; however, there is still room for improved accuracy and precision of the existing algorithms. Furthermore, in machine learning-based techniques, hand-crafted feature extraction mechanism is a tedious task. Therefore, in this paper, we suggest a technique based on customized CenterNet with a pixel-wise voting scheme to extract the features automatically. Our model uses the most representative features due to the best localization results and a weighted pixel-wise voting scheme which takes input from a predicted bounding box using modified CenterNet. It gives a more accurate bounding box based on the voting score from each pixel inside the former box. Moreover, we employed the distillation knowledge concept to make our model simple without increasing its computational cost, and transfer knowledge from a complex network to a simple network. Therefore, our proposed model detects the KOA in knee images precisely and determines its severity level according to the KL grading system such as Grade-I, Grade-II, Grade-III, and Grade-IV. Our proposed model is a robust and improved architecture based on CenterNet utilizing a simple DenseNet-201 as a base network for feature extraction. Due to the dense blocks employed in a base network, most representative features are extracted from the knee samples. We employed two benchmarks i.e. Mendeley VI for the training, and testing, and the OAI dataset for cross-validation. We evaluated the performance of the proposed technique using various experiments and it is estimated that our proposed model outperforms the existing techniques with an accuracy of 99.14% over testing and 98.97% over cross-validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
嗯嗯完成签到 ,获得积分10
1秒前
楚慈楚完成签到,获得积分10
1秒前
思源应助超级忆雪采纳,获得10
2秒前
红红完成签到,获得积分10
3秒前
shunshun51213发布了新的文献求助10
4秒前
4秒前
yeyeye发布了新的文献求助10
4秒前
隐形曼青应助莲莲采纳,获得10
4秒前
5秒前
科研通AI2S应助阿俊1212采纳,获得10
5秒前
6秒前
6秒前
8秒前
可爱的函函应助精明羊青采纳,获得10
8秒前
林兼昆完成签到 ,获得积分10
9秒前
Owen应助爱lx采纳,获得10
9秒前
9秒前
Dreamboat完成签到 ,获得积分10
10秒前
qq完成签到,获得积分10
10秒前
Li发布了新的文献求助10
10秒前
钢铁之心发布了新的文献求助10
11秒前
Willer发布了新的文献求助30
12秒前
隐形曼青应助asparagine采纳,获得10
12秒前
Xu完成签到,获得积分10
13秒前
科研通AI2S应助Jmting采纳,获得10
13秒前
hq_elife完成签到,获得积分10
15秒前
16秒前
123完成签到 ,获得积分10
16秒前
冰川与星辰完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
钢铁之心完成签到,获得积分10
18秒前
达达尼尔发布了新的文献求助10
19秒前
bkagyin应助Li采纳,获得10
19秒前
第二提琴手完成签到,获得积分10
19秒前
toxic完成签到,获得积分10
20秒前
科研通AI5应助古月采纳,获得30
20秒前
Vincent发布了新的文献求助10
20秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980224
求助须知:如何正确求助?哪些是违规求助? 3524191
关于积分的说明 11220260
捐赠科研通 3261653
什么是DOI,文献DOI怎么找? 1800792
邀请新用户注册赠送积分活动 879296
科研通“疑难数据库(出版商)”最低求助积分说明 807232