拉曼光谱
纳米棒
表面增强拉曼光谱
纳米技术
材料科学
病菌
拉曼散射
化学
微生物学
生物
光学
物理
作者
Fareeha Safir,Nhat Vu,Loza F. Tadesse,Kamyar Firouzi,Niaz Banaei,Stefanie S. Jeffrey,Amr A. E. Saleh,B.T. Khuri-Yakub,Jennifer A. Dionne
出处
期刊:Nano Letters
[American Chemical Society]
日期:2023-03-01
卷期号:23 (6): 2065-2073
被引量:36
标识
DOI:10.1021/acs.nanolett.2c03015
摘要
Identifying pathogens in complex samples such as blood, urine, and wastewater is critical to detect infection and inform optimal treatment. Surface-enhanced Raman spectroscopy (SERS) and machine learning (ML) can distinguish among multiple pathogen species, but processing complex fluid samples to sensitively and specifically detect pathogens remains an outstanding challenge. Here, we develop an acoustic bioprinter to digitize samples into millions of droplets, each containing just a few cells, which are identified with SERS and ML. We demonstrate rapid printing of 2 pL droplets from solutions containing S. epidermidis, E. coli, and blood; when mixed with gold nanorods (GNRs), SERS enhancements of up to 1500x are achieved.We then train a ML model and achieve >=99% classification accuracy from cellularly-pure samples, and >=87% accuracy from cellularly-mixed samples. We also obtain >=90% accuracy from droplets with pathogen:blood cell ratios <1. Our combined bioprinting and SERS platform could accelerate rapid, sensitive pathogen detection in clinical, environmental, and industrial settings.
科研通智能强力驱动
Strongly Powered by AbleSci AI