Water-Soluble Ag–Sn–S Nanocrystals Partially Coated with ZnS Shells for Photocatalytic Degradation of Organic Dyes

光催化 成核 降级(电信) 氢氧化物 纳米晶 材料科学 化学工程 质子化 光化学 反应速率常数 无机化学 化学 纳米技术 催化作用 离子 动力学 有机化学 工程类 物理 电信 量子力学 计算机科学
作者
Zhiqiang Li,Wanqing Li,Hongyu Shao,Minghao Dou,Yuye Cheng,Xiangling Wan,Xiuxian Jiang,Zhengguang Zhang,Yanyan Chen,Shenjie Li
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:6 (6): 4417-4427 被引量:7
标识
DOI:10.1021/acsanm.2c05500
摘要

Water-soluble nonrare metal Ag–Sn–S nanocrystals (ATS NCs) were green synthesized at room temperature using the interfacial nucleation mechanism. Interfacial acids regulate the concentration of hydroxide ions outside the complex, the sulfur sources attack the cations at the complex interface, and the sulfur sources form covalent bonds to complete crystal nucleation and growth at room temperature. The band gap of ATS NCs synthesized by the interface nucleation mechanism is 2.32∼2.59 eV, which gives it a higher redox ability and very high photocatalytic degradation rate. A total of 0.8 mg of Ag2SnS3 NCs can achieve photocatalytic degradation of more than 99% of MO (1 mg) under visible light (λ > 420 nm) in 2 min with a photocatalytic rate constant of 2.1247 min–1. Interfacial regulation of acid protonation on the surface of ATS NCs produced more defect states, which was conducive to trapping holes (h+), promoting their transfer to organic pollutants, and improving the photocatalytic oxidation degradation efficiency. Active species of trapping experiments showing photocatalytic degradation of active species as h+, ·O2–, and ·OH do not act as active species for MO degradation in this system. ATS NCs have ultra-high photocatalytic activity and further improve their photocatalytic efficiency by partially coated ZnS shells. Finally, we present the mechanism of photocatalytic degradation of ATS NCs and analyze the possible applications of ATS NCs. Due to its unique advantages of direct synthesis in organic pollutants at room temperature, it is expected to achieve a breakthrough in the practical treatment of large-scale industrial wastewater.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助YAN采纳,获得10
刚刚
迷惘墨香完成签到 ,获得积分10
1秒前
1秒前
Cynthia发布了新的文献求助30
1秒前
共享精神应助shenyanlei采纳,获得10
2秒前
wwww发布了新的文献求助10
2秒前
蔡菜菜完成签到,获得积分10
3秒前
852应助小余采纳,获得10
3秒前
饱满秋完成签到,获得积分10
4秒前
夜白发布了新的文献求助20
4秒前
搜集达人应助明月清风采纳,获得10
4秒前
希夷发布了新的文献求助10
5秒前
5秒前
爆米花应助通~采纳,获得10
5秒前
苏靖完成签到,获得积分10
5秒前
luoyutian发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
科研通AI5应助猪猪采纳,获得10
6秒前
6秒前
海绵体宝宝应助an采纳,获得10
7秒前
wwww完成签到,获得积分10
7秒前
7秒前
桐桐应助柔弱凡松采纳,获得10
7秒前
爆米花应助丶呆久自然萌采纳,获得10
8秒前
8秒前
wanyanjin应助流云采纳,获得10
8秒前
心花怒放发布了新的文献求助10
9秒前
DrYang发布了新的文献求助10
9秒前
9秒前
跑在颖完成签到,获得积分20
9秒前
希望天下0贩的0应助Jackson采纳,获得10
9秒前
徐徐发布了新的文献求助10
10秒前
落花生完成签到,获得积分10
10秒前
y123完成签到 ,获得积分10
10秒前
mnm完成签到,获得积分10
10秒前
10秒前
狂野雁丝应助小张张采纳,获得10
11秒前
qwt_hello关注了科研通微信公众号
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762