A dual attention driven multiscale-multilevel feature fusion approach for hyperspectral image classification

高光谱成像 计算机科学 人工智能 判别式 模式识别(心理学) 水准点(测量) 特征(语言学) 特征提取 卷积神经网络 深度学习 特征学习 数据挖掘 地理 语言学 哲学 大地测量学
作者
Ghulam Farooque,Liang Xiao,Allah Bux Sargano,Fazeel Abid,Fazal Hadi
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:44 (4): 1151-1178 被引量:4
标识
DOI:10.1080/01431161.2023.2176721
摘要

Deep learning has achieved promising results for hyperspectral image (HSI) classification in recent years due to its hierarchical structure and automatic feature extraction ability from raw data. The HSI has continuous spectral information, allowing for the precise identification of materials by capturing minute spectral differences. Convolutional neural networks (CNNs) have proven to be effective feature extractors for HSI classification. However, inherent network limitations prevent them from adequately mining and representing the sequence attributes of spectral signatures and learning critical and valuable features from both spectral and spatial dimensions simultaneously. This paper proposes a deep learning-based framework called a novel dual attention-based multiscale-multilevel ConvLSTM3D (DAMCL) to address these challenges. In this work, our contribution is threefold; firstly, a dual attention mechanism is proposed, effectively learning critical and valuable features from spectral and spatial dimensions. Secondly, multiscale ConvLSTM3D blocks can learn the discriminative features alongside handling long-range dependencies of spectral data. Thirdly, these features are combined by a multilevel feature fusion approach to maximize the impact of features learned at different levels. To assess the performance of the proposed method, extensive experiments are carried out on five different benchmark datasets containing complex and challenging land cover classes. The results confirm that the proposed method outperforms state-of-the-art techniques with a small number of training samples in terms of overall accuracy (OA), average accuracy (AA), and Kappa (k). The overall accuracy of 98.88%, 99.42%, 99.20%, 95.37%, and 92.57% is achieved over the Indian Pines, Salinas Valley, University of Pavia, Houston 2013, and Houston 2018 datasets, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
禹山河完成签到 ,获得积分10
1秒前
撞飞整个世界的小海狸完成签到,获得积分10
1秒前
2秒前
早发论文应助碳酸芙兰采纳,获得10
2秒前
2秒前
互助遵法尚德应助通~采纳,获得10
2秒前
teadan完成签到 ,获得积分10
2秒前
Beal Julien发布了新的文献求助10
3秒前
3秒前
粘豆包完成签到,获得积分10
5秒前
Tq发布了新的文献求助10
7秒前
8秒前
斯文败类应助窗外的你采纳,获得10
8秒前
9秒前
九秋霜完成签到,获得积分10
10秒前
动人的ccc完成签到,获得积分10
10秒前
Robin发布了新的文献求助10
10秒前
机智谷梦完成签到,获得积分10
11秒前
NVN_J完成签到,获得积分10
11秒前
小旭不会飞完成签到,获得积分10
12秒前
13秒前
dimysm发布了新的文献求助10
14秒前
15秒前
16秒前
科研小菜鸡完成签到,获得积分10
16秒前
16秒前
16秒前
17秒前
poyo完成签到,获得积分10
17秒前
李雨轩发布了新的文献求助10
17秒前
18秒前
19秒前
19秒前
恶恶么v发布了新的文献求助10
19秒前
21秒前
丘比特应助megan采纳,获得10
21秒前
帅气的凌寒完成签到,获得积分10
21秒前
清璃发布了新的文献求助10
21秒前
hy完成签到 ,获得积分10
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155997
求助须知:如何正确求助?哪些是违规求助? 2807353
关于积分的说明 7872795
捐赠科研通 2465725
什么是DOI,文献DOI怎么找? 1312328
科研通“疑难数据库(出版商)”最低求助积分说明 630049
版权声明 601905