Continuous Estimation of the Lower-Limb Multi-Joint Angles Based on Muscle Synergy Theory and State-Space Model

均方误差 接头(建筑物) 数学 卡尔曼滤波器 算法 基质(化学分析) 特征(语言学) 非负矩阵分解 平方根 特征向量 计算机科学 模式识别(心理学) 人工智能 矩阵分解 统计 工程类 几何学 结构工程 语言学 哲学 特征向量 物理 量子力学 材料科学 复合材料
作者
Pengjie Qin,Xin Shi,Chengming Zhang,Ke Han
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (8): 8491-8503
标识
DOI:10.1109/jsen.2023.3240170
摘要

Continuous joint angle estimation is essential for enhancing man-machine collaboration performance. However, it is challenging to estimate the complex multi-joint angle of the lower limb accurately. First, a nonredundant feature extraction algorithm for muscle synergy was proposed. The nonnegative matrix factorization (NMF) algorithm was used to extract the muscle activation coefficient matrix, and the muscle activation coefficient matrix was divided into nonredundant and redundant feature vectors. Then, a state-space frame model with nonredundant features as input and redundant features as measurement output to reduce system error was proposed. The square root unscented Kalman filter (SRUKF) algorithm was used to estimate the multi-joint angle of lower limbs. We recruited ten subjects to participate in seven daily activities, including going upstairs (US), downing stairs (DS), going uphill (UH), going downhill (DH), and walking at three speeds of 0.6, 1.0, and 1.4 m/s. The results showed that the average root mean square error (RMSE) of the proposed approach for estimating hip and knee joint angles was 0.44 ± 0.1 and 0.73 ± 0.5, respectively, which was significantly smaller than the common neural networks ( ${p} < 0.05$ ). Particularly, the anti-interference performance of the proposed model was tested. Meanwhile, the adaptability test was carried out through the developed lower-limb multi-joint angle estimation verification system, which proved that the proposed approach could provide accurate and stable estimation results by making full use of redundant features. It can improve the safety of online applications for surface electromyography (sEMG) auxiliary equipment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zwtaihua1025发布了新的文献求助10
1秒前
大模型应助xiaofan采纳,获得10
1秒前
科研通AI5应助CSS采纳,获得30
1秒前
小橘子会发光完成签到,获得积分10
4秒前
喜悦的飞机完成签到,获得积分10
4秒前
4秒前
5秒前
苗秋实完成签到,获得积分10
5秒前
7秒前
香蕉觅云应助huanhuan采纳,获得10
8秒前
科研通AI5应助狂野绿竹采纳,获得10
8秒前
高高完成签到,获得积分10
9秒前
柯柯发布了新的文献求助10
9秒前
danporzhu完成签到,获得积分10
9秒前
9秒前
曾金福完成签到,获得积分20
12秒前
标致南晴发布了新的文献求助10
12秒前
SciGPT应助积极的绫采纳,获得10
12秒前
JTB发布了新的文献求助10
13秒前
15秒前
16秒前
19秒前
19秒前
xiaofan发布了新的文献求助10
21秒前
huanhuan发布了新的文献求助10
21秒前
JTB完成签到,获得积分10
21秒前
所所应助稳重的白羊采纳,获得10
22秒前
小赵完成签到 ,获得积分10
23秒前
gy发布了新的文献求助10
23秒前
领导范儿应助123采纳,获得10
25秒前
所所应助Liar采纳,获得10
26秒前
QQ完成签到,获得积分10
27秒前
NexusExplorer应助miaxj采纳,获得20
29秒前
stqbxylj完成签到,获得积分20
29秒前
30秒前
莫弃完成签到 ,获得积分10
31秒前
森ok发布了新的文献求助10
31秒前
33秒前
magicfu发布了新的文献求助30
33秒前
乐正亦寒完成签到 ,获得积分10
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3554070
求助须知:如何正确求助?哪些是违规求助? 3129835
关于积分的说明 9384354
捐赠科研通 2828932
什么是DOI,文献DOI怎么找? 1555328
邀请新用户注册赠送积分活动 725969
科研通“疑难数据库(出版商)”最低求助积分说明 715352