锌
电解质
无机化学
硼
六方氮化硼
六方晶系
化学
离子
材料科学
氮化物
冶金
纳米技术
电极
结晶学
有机化学
物理化学
石墨烯
图层(电子)
作者
Kailimai Su,Jing Chen,Xu Zhang,Jianze Feng,Yongtai Xu,Yunxun Pu,Chengshuai Wang,Pengjun Ma,Yan Wang,Junwei Lang
标识
DOI:10.1016/j.jpowsour.2022.232074
摘要
Aqueous zinc ion batteries (AZIBs) have attracted much attention due to their safety, reliability, low cost, simple operation and environmental friendliness. However, the stability and safety of AZIBs are seriously affected by uncontrolled hazardous zinc dendrite growth and adverse side reactions of the zinc anode. To address these problems, we present a strategy of adding polydopamine (PDA) modified h-BN ([email protected]) additive into 1 M ZnSO4 electrolyte to inhibit Zn dendrites and construct safe batteries. The [email protected] additive endows a dendrite-free electrodeposition behavior by regulating the concentration gradient of Zn2+, redistributing the uneven Zn2+ flux, and covering the formation sites of dendrites. This is mainly attributed to the combined action of redistribution of Zn2+ by h-BN and the immobilization of electrolyte anions by the catechol functional groups of PDA. Consequently, the Zn||Zn cell with [email protected] additive can be cycled for more than 1700h at 0.5 mA cm−2 with a small plating/stripping overpotential of around 0.03 mV, and more than 1000h even at 1 mA cm−2. Additionally, the Zn||ZnSO4[email protected]||V2O5 battery can render excellent stability for 1500 cycles at 10 A g−1. These results open up an opportunity for [email protected] and other solid electrolyte additives in the design of advanced and durable AZIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI