Radiomics Analysis of Lymph Nodes with Esophageal Squamous Cell Carcinoma Based on Deep Learning

医学 无线电技术 接收机工作特性 人工智能 Lasso(编程语言) 食管鳞状细胞癌 深度学习 淋巴结 放射科 淋巴结转移 阿达布思 支持向量机 淋巴 机器学习 转移 病理 计算机科学 癌症 内科学 万维网
作者
Li Chen,Yi Ouyang,Shuang Liu,Jie Lin,Changhuan Chen,Chengchao Zheng,Jianbo Lin,Zhijian Hu,Moliang Qiu
出处
期刊:Journal of Oncology [Hindawi Publishing Corporation]
卷期号:2022: 1-11 被引量:1
标识
DOI:10.1155/2022/8534262
摘要

Purpose. To assess the role of multiple radiomic features of lymph nodes in the preoperative prediction of lymph node metastasis (LNM) in patients with esophageal squamous cell carcinoma (ESCC). Methods. Three hundred eight patients with pathologically confirmed ESCC were retrospectively enrolled (training cohort, n = 216; test cohort, n = 92). We extracted 207 handcrafted radiomic features and 1000 deep radiomic features of lymph nodes from their computed tomography (CT) images. The t-test and least absolute shrinkage and selection operator (LASSO) were used to reduce the dimensions and select key features. Handcrafted radiomics, deep radiomics, and clinical features were combined to construct models. Models I (handcrafted radiomic features), II (Model I plus deep radiomic features), and III (Model II plus clinical features) were built using three machine learning methods: support vector machine (SVM), adaptive boosting (AdaBoost), and random forest (RF). The best model was compared with the results of two radiologists, and its performance was evaluated in terms of sensitivity, specificity, accuracy, area under the curve (AUC), and receiver operating characteristic (ROC) curve analysis. Results. No significant differences were observed between cohorts. Ten handcrafted and 12 deep radiomic features were selected from the extracted features ( p < 0.05 ). Model III could discriminate between patients with and without LNM better than the diagnostic results of the two radiologists. Conclusion. The combination of handcrafted radiomic features, deep radiomic features, and clinical features could be used clinically to assess lymph node status in patients with ESCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助化学喵采纳,获得10
刚刚
刚刚
hbhbj发布了新的文献求助10
2秒前
2秒前
爆米花应助Pluto采纳,获得10
3秒前
jiangzong完成签到,获得积分10
3秒前
隐形曼青应助找不到文献采纳,获得10
3秒前
帅气小霜完成签到,获得积分10
3秒前
LKSkywalker完成签到,获得积分10
4秒前
TXQ发布了新的文献求助10
6秒前
英俊的铭应助zhuzhu采纳,获得10
7秒前
Xx完成签到,获得积分10
7秒前
Epiphany完成签到,获得积分10
7秒前
欣慰的绿蝶关注了科研通微信公众号
8秒前
波波发布了新的文献求助10
8秒前
hbhbj发布了新的文献求助10
9秒前
CipherSage应助缥缈的夜梅采纳,获得10
9秒前
9秒前
10秒前
12秒前
脑洞疼应助13采纳,获得20
12秒前
完美世界应助skyler采纳,获得10
12秒前
无花果应助小白采纳,获得10
14秒前
15秒前
orixero应助银玥采纳,获得10
16秒前
16秒前
ll完成签到,获得积分10
16秒前
高数数完成签到 ,获得积分10
16秒前
awuwuwu发布了新的文献求助10
17秒前
科研通AI6应助美好向日葵采纳,获得10
18秒前
机智平灵发布了新的文献求助10
18秒前
华山发布了新的文献求助30
18秒前
炙热的以南完成签到,获得积分10
19秒前
hbhbj发布了新的文献求助10
19秒前
帅气小霜发布了新的文献求助10
20秒前
mikejames完成签到,获得积分10
21秒前
桃桃发布了新的文献求助10
21秒前
洋芋小姐完成签到 ,获得积分20
21秒前
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264928
求助须知:如何正确求助?哪些是违规求助? 4425065
关于积分的说明 13775359
捐赠科研通 4300354
什么是DOI,文献DOI怎么找? 2359671
邀请新用户注册赠送积分活动 1355731
关于科研通互助平台的介绍 1317058