Radiomics Analysis of Lymph Nodes with Esophageal Squamous Cell Carcinoma Based on Deep Learning

医学 无线电技术 接收机工作特性 人工智能 Lasso(编程语言) 食管鳞状细胞癌 深度学习 淋巴结 放射科 淋巴结转移 阿达布思 支持向量机 淋巴 机器学习 转移 病理 计算机科学 癌症 内科学 万维网
作者
Li Chen,Yi Ouyang,Shuang Liu,Jie Lin,Changhuan Chen,Chengchao Zheng,Jianbo Lin,Zhijian Hu,Moliang Qiu
出处
期刊:Journal of Oncology [Hindawi Limited]
卷期号:2022: 1-11 被引量:1
标识
DOI:10.1155/2022/8534262
摘要

Purpose. To assess the role of multiple radiomic features of lymph nodes in the preoperative prediction of lymph node metastasis (LNM) in patients with esophageal squamous cell carcinoma (ESCC). Methods. Three hundred eight patients with pathologically confirmed ESCC were retrospectively enrolled (training cohort, n = 216; test cohort, n = 92). We extracted 207 handcrafted radiomic features and 1000 deep radiomic features of lymph nodes from their computed tomography (CT) images. The t-test and least absolute shrinkage and selection operator (LASSO) were used to reduce the dimensions and select key features. Handcrafted radiomics, deep radiomics, and clinical features were combined to construct models. Models I (handcrafted radiomic features), II (Model I plus deep radiomic features), and III (Model II plus clinical features) were built using three machine learning methods: support vector machine (SVM), adaptive boosting (AdaBoost), and random forest (RF). The best model was compared with the results of two radiologists, and its performance was evaluated in terms of sensitivity, specificity, accuracy, area under the curve (AUC), and receiver operating characteristic (ROC) curve analysis. Results. No significant differences were observed between cohorts. Ten handcrafted and 12 deep radiomic features were selected from the extracted features ( p < 0.05 ). Model III could discriminate between patients with and without LNM better than the diagnostic results of the two radiologists. Conclusion. The combination of handcrafted radiomic features, deep radiomic features, and clinical features could be used clinically to assess lymph node status in patients with ESCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多摩川的烟花少年完成签到,获得积分10
刚刚
addeoo发布了新的文献求助10
2秒前
九日科研ing完成签到,获得积分0
3秒前
完美芹发布了新的文献求助10
3秒前
lsy871437154发布了新的文献求助10
4秒前
4秒前
心愿完成签到 ,获得积分10
4秒前
6秒前
6秒前
7秒前
研友_VZG7GZ应助奥沙利楠采纳,获得10
7秒前
番茄死忠粉完成签到,获得积分10
7秒前
7秒前
灰色与青完成签到,获得积分10
8秒前
8秒前
传奇3应助完美芹采纳,获得10
9秒前
rrrr完成签到,获得积分10
10秒前
10秒前
huco发布了新的文献求助20
10秒前
向日葵完成签到,获得积分10
11秒前
张张发布了新的文献求助10
12秒前
lalalala发布了新的文献求助10
12秒前
Ava应助诺之采纳,获得10
14秒前
南风不竞发布了新的文献求助10
14秒前
Sun完成签到,获得积分10
16秒前
curtain完成签到,获得积分10
18秒前
19秒前
Zhen Wang完成签到,获得积分10
21秒前
yuhangli发布了新的文献求助10
24秒前
24秒前
25秒前
25秒前
25秒前
可爱的函函应助张可采纳,获得10
27秒前
zoy399发布了新的文献求助30
28秒前
28秒前
29秒前
尚可发布了新的文献求助10
30秒前
Belle发布了新的文献求助10
30秒前
诺之发布了新的文献求助10
30秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260482
求助须知:如何正确求助?哪些是违规求助? 2901663
关于积分的说明 8316456
捐赠科研通 2571234
什么是DOI,文献DOI怎么找? 1396896
科研通“疑难数据库(出版商)”最低求助积分说明 653598
邀请新用户注册赠送积分活动 632040