Radiomics Analysis of Lymph Nodes with Esophageal Squamous Cell Carcinoma Based on Deep Learning

医学 无线电技术 接收机工作特性 人工智能 Lasso(编程语言) 食管鳞状细胞癌 深度学习 淋巴结 放射科 淋巴结转移 阿达布思 支持向量机 淋巴 机器学习 转移 病理 计算机科学 癌症 内科学 万维网
作者
Li Chen,Yi Ouyang,Shuang Liu,Jie Lin,Changhuan Chen,Chengchao Zheng,Jianbo Lin,Zhijian Hu,Moliang Qiu
出处
期刊:Journal of Oncology [Hindawi Publishing Corporation]
卷期号:2022: 1-11 被引量:1
标识
DOI:10.1155/2022/8534262
摘要

Purpose. To assess the role of multiple radiomic features of lymph nodes in the preoperative prediction of lymph node metastasis (LNM) in patients with esophageal squamous cell carcinoma (ESCC). Methods. Three hundred eight patients with pathologically confirmed ESCC were retrospectively enrolled (training cohort, n = 216; test cohort, n = 92). We extracted 207 handcrafted radiomic features and 1000 deep radiomic features of lymph nodes from their computed tomography (CT) images. The t-test and least absolute shrinkage and selection operator (LASSO) were used to reduce the dimensions and select key features. Handcrafted radiomics, deep radiomics, and clinical features were combined to construct models. Models I (handcrafted radiomic features), II (Model I plus deep radiomic features), and III (Model II plus clinical features) were built using three machine learning methods: support vector machine (SVM), adaptive boosting (AdaBoost), and random forest (RF). The best model was compared with the results of two radiologists, and its performance was evaluated in terms of sensitivity, specificity, accuracy, area under the curve (AUC), and receiver operating characteristic (ROC) curve analysis. Results. No significant differences were observed between cohorts. Ten handcrafted and 12 deep radiomic features were selected from the extracted features ( p < 0.05 ). Model III could discriminate between patients with and without LNM better than the diagnostic results of the two radiologists. Conclusion. The combination of handcrafted radiomic features, deep radiomic features, and clinical features could be used clinically to assess lymph node status in patients with ESCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
楠楠完成签到,获得积分10
2秒前
2秒前
lq完成签到,获得积分10
3秒前
4秒前
漂亮的美女完成签到,获得积分10
4秒前
paojiao发布了新的文献求助10
4秒前
懒羊羊完成签到,获得积分10
5秒前
诗音时雨完成签到,获得积分10
7秒前
8秒前
云飞扬应助若水三千采纳,获得10
10秒前
jawa完成签到 ,获得积分10
11秒前
自由的甜瓜完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
15秒前
Francisco2333完成签到,获得积分10
15秒前
hh发布了新的文献求助10
17秒前
17秒前
顺利凡阳完成签到 ,获得积分10
18秒前
acorn发布了新的文献求助10
18秒前
silencegreen5发布了新的文献求助10
20秒前
华仔应助文文采纳,获得10
20秒前
21秒前
1234567完成签到,获得积分10
22秒前
22秒前
修杰完成签到,获得积分10
23秒前
Jasper应助李鹏飞采纳,获得10
23秒前
Yuuuuu应助宝海青采纳,获得10
25秒前
acorn完成签到,获得积分10
27秒前
火星上的羽毛应助长度2到采纳,获得10
28秒前
潇洒应助mzf采纳,获得10
28秒前
N型半导体发布了新的文献求助10
29秒前
29秒前
29秒前
30秒前
djiwisksk66应助shinn采纳,获得10
31秒前
paojiao完成签到,获得积分10
32秒前
gslsx409完成签到,获得积分10
32秒前
兴奋渊思完成签到 ,获得积分10
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952453
求助须知:如何正确求助?哪些是违规求助? 3497823
关于积分的说明 11088977
捐赠科研通 3228398
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303