Explainable machine learning rapid approach to evaluate coal ash content based on X-ray fluorescence

内容(测量理论) 预测建模 超参数 机器学习 人工智能 试验装置 计算机科学 X射线荧光 数学 工程类 废物管理 荧光 数学分析 物理 量子力学
作者
Zhiping Wen,Hangtao Liu,Maiqiang Zhou,Cheng Liu,Changchun Zhou
出处
期刊:Fuel [Elsevier]
卷期号:332: 125991-125991 被引量:25
标识
DOI:10.1016/j.fuel.2022.125991
摘要

As one of the most important indexes of coal quality, accurate and rapid prediction of ash content is urgent and important significance for the coal processing industry. In this work, combined with Shapley Additive exPlanations (SHAP), a machine learning model has been developed to predict the ash content of coal samples based on composition data of XRF analysis. Among the many supervised regression learning algorithms, Poly, RFR, XGBoost, and DNN are used in this predictive model to overcome the ash content prediction research gap. The input parameters were the elements content and ash contents of the coal samples. To evaluate the proposed method, a dataset of XRF data was constructed, containing 217 sets of element content with different ash content labels. Specifically, the dataset is divided into a training set and test set in the proportion 8:2, and RandomizedSearchCV is used to optimize hyperparameters during model training. Experimental results show that the RFR model produced a superior prediction performance over other models (the RMSE, MAE and R2 were 1.3278, 0.9339 and 0.9916, respectively). The contribution and role of each element to the ash prediction model are explained and investigated. Moreover, as a result of SHAP interpretation, the nine most important elements (Al, S, Si, Fe, Ca, Ti, K, Sr and Zr) has the greatest contribution to model performance. The case of this paper suggests that interpreted machine learning models and XRF data are good alternatives to ash content prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小菇完成签到,获得积分10
刚刚
mhpvv发布了新的文献求助10
1秒前
华仔应助三井库里采纳,获得10
1秒前
乐观期待发布了新的文献求助10
1秒前
阿卡波糖完成签到,获得积分10
2秒前
2秒前
2秒前
冰块儿发布了新的文献求助10
2秒前
研友_Z6Qrbn完成签到,获得积分10
3秒前
Owen应助小林采纳,获得30
4秒前
小菇发布了新的文献求助10
4秒前
英俊的铭应助缥缈的紫青采纳,获得10
4秒前
暮尘尘发布了新的文献求助10
5秒前
田様应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
Jasper应助三更笔舞采纳,获得10
5秒前
6秒前
6秒前
6秒前
madman发布了新的文献求助10
6秒前
乐观期待完成签到,获得积分10
6秒前
Hh完成签到,获得积分10
7秒前
DBY完成签到,获得积分10
7秒前
Flora发布了新的文献求助10
7秒前
李健的小迷弟应助QinQin采纳,获得10
8秒前
思源应助toey采纳,获得10
8秒前
yyywwwddd333完成签到,获得积分10
8秒前
8秒前
洛洛发布了新的文献求助10
9秒前
小巧曲奇完成签到,获得积分10
9秒前
just_cook完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466394
求助须知:如何正确求助?哪些是违规求助? 3059156
关于积分的说明 9065091
捐赠科研通 2749616
什么是DOI,文献DOI怎么找? 1508644
科研通“疑难数据库(出版商)”最低求助积分说明 696987
邀请新用户注册赠送积分活动 696733