Machine learning to improve the interpretation of intercalating dye-based quantitative PCR results

人工智能 计算机科学 分类器(UML) 机器学习 科恩卡帕 卡帕 口译(哲学) 模式识别(心理学) 数学 几何学 程序设计语言
作者
Alexandre Godmer,Jeanne Bigot,Quentin Giai Gianetto,Yahia Benzerara,Nicolas Véziris,Alexandra Aubry,J. Guitard,Christophe Hennequin
出处
期刊:Scientific Reports [Springer Nature]
卷期号:12 (1) 被引量:5
标识
DOI:10.1038/s41598-022-21010-z
摘要

This study aimed to evaluate the contribution of Machine Learning (ML) approach in the interpretation of intercalating dye-based quantitative PCR (IDqPCR) signals applied to the diagnosis of mucormycosis. The ML-based classification approach was applied to 734 results of IDqPCR categorized as positive (n = 74) or negative (n = 660) for mucormycosis after combining "visual reading" of the amplification and denaturation curves with clinical, radiological and microbiological criteria. Fourteen features were calculated to characterize the curves and injected in several pipelines including four ML-algorithms. An initial subset (n = 345) was used for the conception of classifiers. The classifier predictions were combined with majority voting to estimate performances of 48 meta-classifiers on an external dataset (n = 389). The visual reading returned 57 (7.7%), 568 (77.4%) and 109 (14.8%) positive, negative and doubtful results respectively. The Kappa coefficients of all the meta-classifiers were greater than 0.83 for the classification of IDqPCR results on the external dataset. Among these meta-classifiers, 6 exhibited Kappa coefficients at 1. The proposed ML-based approach allows a rigorous interpretation of IDqPCR curves, making the diagnosis of mucormycosis available for non-specialists in molecular diagnosis. A free online application was developed to classify IDqPCR from the raw data of the thermal cycler output ( http://gepamy-sat.asso.st/ ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助正直亦旋采纳,获得10
刚刚
科研通AI5应助jijahui采纳,获得80
1秒前
Jenny应助背后的诺言采纳,获得10
1秒前
木木完成签到,获得积分10
1秒前
赤邪发布了新的文献求助10
1秒前
1秒前
keen完成签到 ,获得积分10
1秒前
et完成签到,获得积分10
2秒前
桂魄完成签到,获得积分10
2秒前
2秒前
3秒前
wang发布了新的文献求助200
4秒前
4秒前
4秒前
英姑应助snowdrift采纳,获得10
4秒前
4秒前
4秒前
jy完成签到 ,获得积分10
4秒前
NexusExplorer应助立马毕业采纳,获得10
5秒前
在水一方应助123采纳,获得10
6秒前
科目三应助白华苍松采纳,获得10
7秒前
通~发布了新的文献求助10
7秒前
CipherSage应助千幻采纳,获得10
7秒前
7秒前
dddddd完成签到,获得积分10
7秒前
桂魄发布了新的文献求助10
7秒前
年轻的咖啡豆完成签到,获得积分20
8秒前
8秒前
绿洲发布了新的文献求助10
8秒前
8秒前
9秒前
aDou完成签到 ,获得积分10
9秒前
脑洞疼应助bc采纳,获得10
9秒前
NEMO发布了新的文献求助10
9秒前
李健应助mammoth采纳,获得20
9秒前
熊boy发布了新的文献求助10
9秒前
天真思雁发布了新的文献求助10
9秒前
10秒前
情怀应助蔡蔡不菜菜采纳,获得10
10秒前
shouyu29应助MADKAI采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762