A preliminary study in classification of the severity of spine deformation in adolescents with lumbar/thoracolumbar idiopathic scoliosis using machine learning algorithms based on lumbosacral joint efforts during gait

脊柱侧凸 腰骶关节 医学 腰椎 机器学习 射线照相术 算法 畸形 人工智能 步态 物理医学与康复 随机森林 计算机科学 放射科 外科
作者
Bahare Samadi,Maxime Raison,Philippe Mahaudens,Christine Detrembleur,Sofiane Achiche
出处
期刊:Computer Methods in Biomechanics and Biomedical Engineering [Informa]
卷期号:26 (11): 1341-1352 被引量:3
标识
DOI:10.1080/10255842.2022.2117547
摘要

To assess the severity and progression of adolescents with idiopathic scoliosis (AIS), radiography with X-rays is usually used. The methods based on statistical observations have been developed from 3D reconstruction of the trunk or topography. Machine learning has shown great potential to classify the severity of scoliosis on imaging data, generally on X-ray measurements. It is also known that AIS leads to the development of gait disorder. To our knowledge, machine learning has never been tested on spine intervertebral efforts during gait as a radiation-free method to classify the severity of spinal deformity in AIS. Develop automated machine learning algorithms in lumbar/thoracolumbar scoliosis to classify the severity of spinal deformity of AIS based on the lumbosacral joint (L5-S1) efforts during gait. The lumbosacral joint efforts of 30 individuals with lumbar/thoracolumbar AIS were used as distinctive features fed to the machine learning algorithms. Several tests were run using various classification algorithms. The labeling consisted of three classes reflecting the severity of scoliosis i.e. mild, moderate and severe. The ensemble classifier algorithm including k-nearest neighbors, support vector machine, random forest and multilayer perceptron achieved the most promising results, with accuracy scores of 91.4%. This preliminary study shows lumbosacral joint efforts can be used to classify the severity of spinal deformity in lumbar/thoracolumbar AIS. This method showed the potential of being used as an assessment tool to follow-up the progression of AIS as a radiation-free method, alternative to radiography. Future studies should be performed to test the method on other categories of AIS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto应助ang采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
牛的滑完成签到,获得积分10
2秒前
Owen应助bodao采纳,获得10
3秒前
3秒前
3秒前
田様应助yjy123采纳,获得10
4秒前
被风吹过的路完成签到,获得积分10
4秒前
向阳而生完成签到,获得积分10
5秒前
大方忆秋完成签到 ,获得积分10
6秒前
8秒前
8秒前
LXL驳回了orixero应助
9秒前
NiNi完成签到 ,获得积分10
9秒前
不晚完成签到,获得积分20
10秒前
10秒前
fffff发布了新的文献求助10
12秒前
Mangues驳回了EchoH应助
12秒前
阿冲发布了新的文献求助10
13秒前
14秒前
xyu完成签到,获得积分10
14秒前
liu发布了新的文献求助10
14秒前
14秒前
16秒前
16秒前
pluto应助fafafa采纳,获得10
17秒前
Meteor636发布了新的文献求助10
17秒前
18秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
Akim应助KBYer采纳,获得10
19秒前
fffff完成签到,获得积分10
19秒前
20秒前
尘迹完成签到,获得积分10
20秒前
nove999完成签到 ,获得积分10
20秒前
袜子发布了新的文献求助20
20秒前
dlwlrma完成签到 ,获得积分10
21秒前
2182265539发布了新的文献求助10
21秒前
kkongxr完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741788
求助须知:如何正确求助?哪些是违规求助? 5404183
关于积分的说明 15343341
捐赠科研通 4883301
什么是DOI,文献DOI怎么找? 2625012
邀请新用户注册赠送积分活动 1573824
关于科研通互助平台的介绍 1530761