A preliminary study in classification of the severity of spine deformation in adolescents with lumbar/thoracolumbar idiopathic scoliosis using machine learning algorithms based on lumbosacral joint efforts during gait

脊柱侧凸 腰骶关节 医学 腰椎 机器学习 射线照相术 算法 畸形 人工智能 步态 物理医学与康复 随机森林 计算机科学 放射科 外科
作者
Bahare Samadi,Maxime Raison,Philippe Mahaudens,Christine Detrembleur,Sofiane Achiche
出处
期刊:Computer Methods in Biomechanics and Biomedical Engineering [Informa]
卷期号:26 (11): 1341-1352 被引量:3
标识
DOI:10.1080/10255842.2022.2117547
摘要

To assess the severity and progression of adolescents with idiopathic scoliosis (AIS), radiography with X-rays is usually used. The methods based on statistical observations have been developed from 3D reconstruction of the trunk or topography. Machine learning has shown great potential to classify the severity of scoliosis on imaging data, generally on X-ray measurements. It is also known that AIS leads to the development of gait disorder. To our knowledge, machine learning has never been tested on spine intervertebral efforts during gait as a radiation-free method to classify the severity of spinal deformity in AIS. Develop automated machine learning algorithms in lumbar/thoracolumbar scoliosis to classify the severity of spinal deformity of AIS based on the lumbosacral joint (L5-S1) efforts during gait. The lumbosacral joint efforts of 30 individuals with lumbar/thoracolumbar AIS were used as distinctive features fed to the machine learning algorithms. Several tests were run using various classification algorithms. The labeling consisted of three classes reflecting the severity of scoliosis i.e. mild, moderate and severe. The ensemble classifier algorithm including k-nearest neighbors, support vector machine, random forest and multilayer perceptron achieved the most promising results, with accuracy scores of 91.4%. This preliminary study shows lumbosacral joint efforts can be used to classify the severity of spinal deformity in lumbar/thoracolumbar AIS. This method showed the potential of being used as an assessment tool to follow-up the progression of AIS as a radiation-free method, alternative to radiography. Future studies should be performed to test the method on other categories of AIS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
学术混子完成签到,获得积分10
3秒前
4秒前
SIyuan发布了新的文献求助10
5秒前
任盈盈完成签到,获得积分10
6秒前
lucky花生完成签到,获得积分10
6秒前
nayogi完成签到 ,获得积分10
8秒前
卯一发布了新的文献求助10
8秒前
SIyuan完成签到,获得积分10
9秒前
WUWUWU应助认真谷雪采纳,获得10
10秒前
AaronW发布了新的文献求助10
10秒前
11秒前
燕儿完成签到,获得积分10
12秒前
自然友菱发布了新的文献求助10
15秒前
16秒前
糖糖公主完成签到,获得积分10
17秒前
徐佳达发布了新的文献求助10
17秒前
xinxin完成签到,获得积分10
18秒前
彭佳丽发布了新的文献求助10
20秒前
大模型应助孙兆杰采纳,获得20
21秒前
依依完成签到 ,获得积分10
21秒前
崔崔发布了新的文献求助10
25秒前
良辰应助LmaPN7采纳,获得20
26秒前
张奕冰完成签到,获得积分10
26秒前
大个应助Candy采纳,获得10
26秒前
彭佳丽完成签到,获得积分10
27秒前
刘66完成签到,获得积分10
28秒前
28秒前
wuhao0118发布了新的文献求助10
29秒前
Mingyue123完成签到,获得积分10
29秒前
Orange应助波利波利爱吃鱼采纳,获得10
30秒前
头真的很大完成签到 ,获得积分10
30秒前
Shawn完成签到,获得积分10
32秒前
Dec123完成签到 ,获得积分10
33秒前
33秒前
认真路灯完成签到 ,获得积分10
36秒前
Candy发布了新的文献求助10
39秒前
Orange应助0617采纳,获得10
39秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308488
求助须知:如何正确求助?哪些是违规求助? 2941822
关于积分的说明 8506015
捐赠科研通 2616798
什么是DOI,文献DOI怎么找? 1429796
科研通“疑难数据库(出版商)”最低求助积分说明 663919
邀请新用户注册赠送积分活动 649019