A novel entropy-based method to quantify forest canopy structural complexity from multiplatform lidar point clouds

激光雷达 天蓬 遥感 点云 环境科学 激光扫描 树冠 叶面积指数 计算机科学 地理 生态学 激光器 人工智能 生物 光学 物理 考古
作者
Xiaoqiang Liu,Qin Ma,Xiaoyong Wu,Tianyu Hu,Zhonghua Liu,Lingli Liu,Qinghua Guo,Yanjun Su
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:282: 113280-113280 被引量:32
标识
DOI:10.1016/j.rse.2022.113280
摘要

Forest canopy structural complexity (CSC) describes the three-dimensional (3D) arrangement of canopy elements, and has become an emergent forest attribute mediating forest ecosystem functioning along with species diversity. Light detection and ranging (lidar), especially the emerging near-surface lidar platforms (e.g., terrestrial laser scanning/TLS, backpack laser scanning/BLS, unmanned aerial vehicle laser scanning/ULS), can depict 3D canopy information with high efficiency and accuracy, providing an ideal data source for forest CSC quantification. However, current existing lidar-based CSC quantification indices may share common limitations of getting saturated in structurally complex forest stands and not fully capturing within-canopy structural variations. In this study, we introduced the concept of entropy into forest CSC quantification, and proposed a new forest CSC index, namely canopy entropy (CE). Two major bottlenecks were addressed in the CE calculation procedure, including (1) using a Mann-Kendall (MK) test-based resampling strategy to address the issue of incongruent sampling chances of canopy elements at different locations from different lidar systems, and (2) using a kernel density estimation (KDE)-based method to reduce its dependence on point density. The effectiveness and generality of CE were evaluated by simulating TLS and ULS point clouds from nine forest stands and collecting TLS, BLS, and ULS point clouds from 110 field plots distributed in five forest sites, covering a large variety of forest types and forest CSC conditions. The results showed that CE was an effective forest CSC quantification index that successfully captured CSC variations caused by both tree density and the number of vertical canopy layers. It had significant positive correlations with four widely used CSC indices (i.e., canopy cover, foliage height diversity, canopy top rugosity, and fractal dimension; R2: 0.32 to 0.67), but outperformed them by overcoming their common limitations. CE estimates from multiplatform lidar point clouds agreed well with each other (R2 ≥ 0.70, RMSE ≤0.10), indicating it has generality in cross-platform forest CSC quantification practices. We believe the proposed CE index has great potential to help us unravel the correlations among forest CSC, species diversity, and forest ecosystem functions, and therefore improve our understanding on forest ecosystem processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
溶脂发布了新的文献求助10
2秒前
Tessa发布了新的文献求助10
3秒前
yaya发布了新的文献求助10
3秒前
alb完成签到,获得积分10
4秒前
含氢完成签到,获得积分10
6秒前
百灵完成签到 ,获得积分10
6秒前
十三完成签到,获得积分10
7秒前
Tessa完成签到,获得积分10
8秒前
一码归一码完成签到 ,获得积分10
8秒前
科研通AI5应助revive采纳,获得10
10秒前
英姑应助大王采纳,获得10
10秒前
阔达的花卷完成签到 ,获得积分10
11秒前
民大胡完成签到,获得积分10
12秒前
13秒前
Guyiru完成签到,获得积分10
13秒前
14秒前
李健应助WW采纳,获得10
14秒前
14秒前
15秒前
Akim应助活力安南采纳,获得10
16秒前
KSung完成签到,获得积分10
16秒前
aaaaaa完成签到,获得积分10
16秒前
pluto应助鲁班七号采纳,获得10
16秒前
甜甜的冬灵关注了科研通微信公众号
17秒前
18秒前
叶羽天完成签到,获得积分20
19秒前
小蘑菇应助蓦然回首采纳,获得10
19秒前
21秒前
温柔的惜儿完成签到 ,获得积分10
21秒前
科研通AI5应助榕树采纳,获得10
22秒前
JamesPei应助charlene采纳,获得10
22秒前
22秒前
小富婆发布了新的文献求助30
22秒前
彭于彦祖应助科研通管家采纳,获得20
22秒前
深情安青应助科研通管家采纳,获得10
23秒前
知还发布了新的文献求助10
23秒前
科目三应助科研通管家采纳,获得10
23秒前
JamesPei应助科研通管家采纳,获得10
23秒前
pluto应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741065
求助须知:如何正确求助?哪些是违规求助? 3283833
关于积分的说明 10037107
捐赠科研通 3000659
什么是DOI,文献DOI怎么找? 1646647
邀请新用户注册赠送积分活动 783804
科研通“疑难数据库(出版商)”最低求助积分说明 750427