A novel entropy-based method to quantify forest canopy structural complexity from multiplatform lidar point clouds

激光雷达 天蓬 遥感 点云 环境科学 激光扫描 树冠 叶面积指数 结构复杂性 森林结构 森林生态学 计算机科学 测距 采样(信号处理) 城市森林 森林资源清查 树(集合论) 森林经营 熵(时间箭头) 城市林业 树形结构
作者
Xiaoqiang Liu,Qin Ma,Xiaoyong Wu,Tianyu Hu,Zhonghua Liu,Lingli Liu,Qinghua Guo,Yanjun Su
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:282: 113280-113280 被引量:47
标识
DOI:10.1016/j.rse.2022.113280
摘要

Forest canopy structural complexity (CSC) describes the three-dimensional (3D) arrangement of canopy elements, and has become an emergent forest attribute mediating forest ecosystem functioning along with species diversity. Light detection and ranging (lidar), especially the emerging near-surface lidar platforms (e.g., terrestrial laser scanning/TLS, backpack laser scanning/BLS, unmanned aerial vehicle laser scanning/ULS), can depict 3D canopy information with high efficiency and accuracy, providing an ideal data source for forest CSC quantification. However, current existing lidar-based CSC quantification indices may share common limitations of getting saturated in structurally complex forest stands and not fully capturing within-canopy structural variations. In this study, we introduced the concept of entropy into forest CSC quantification, and proposed a new forest CSC index, namely canopy entropy (CE). Two major bottlenecks were addressed in the CE calculation procedure, including (1) using a Mann-Kendall (MK) test-based resampling strategy to address the issue of incongruent sampling chances of canopy elements at different locations from different lidar systems, and (2) using a kernel density estimation (KDE)-based method to reduce its dependence on point density. The effectiveness and generality of CE were evaluated by simulating TLS and ULS point clouds from nine forest stands and collecting TLS, BLS, and ULS point clouds from 110 field plots distributed in five forest sites, covering a large variety of forest types and forest CSC conditions. The results showed that CE was an effective forest CSC quantification index that successfully captured CSC variations caused by both tree density and the number of vertical canopy layers. It had significant positive correlations with four widely used CSC indices (i.e., canopy cover, foliage height diversity, canopy top rugosity, and fractal dimension; R2: 0.32 to 0.67), but outperformed them by overcoming their common limitations. CE estimates from multiplatform lidar point clouds agreed well with each other (R2 ≥ 0.70, RMSE ≤0.10), indicating it has generality in cross-platform forest CSC quantification practices. We believe the proposed CE index has great potential to help us unravel the correlations among forest CSC, species diversity, and forest ecosystem functions, and therefore improve our understanding on forest ecosystem processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Eric完成签到,获得积分10
3秒前
威武从霜发布了新的文献求助10
3秒前
mvpzxx发布了新的文献求助30
4秒前
知了完成签到 ,获得积分10
4秒前
77发布了新的文献求助10
5秒前
冯藏花完成签到,获得积分10
5秒前
小白完成签到 ,获得积分10
6秒前
陈曦读研版完成签到 ,获得积分10
6秒前
7秒前
paws发布了新的文献求助10
7秒前
Akim应助无限绮南采纳,获得10
10秒前
红毛兔完成签到,获得积分10
10秒前
saily完成签到,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
13秒前
幽默身影发布了新的文献求助10
13秒前
乐乐发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
哈哈镜阿姐应助paws采纳,获得10
16秒前
laifeihong完成签到,获得积分10
16秒前
77完成签到,获得积分20
16秒前
科研小白发布了新的文献求助30
16秒前
17秒前
19秒前
19秒前
西米发布了新的文献求助10
19秒前
20秒前
坚果发布了新的文献求助10
20秒前
20秒前
何必在乎发布了新的文献求助10
21秒前
露桥闻笛发布了新的文献求助30
23秒前
cding发布了新的文献求助10
24秒前
24秒前
25秒前
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642496
求助须知:如何正确求助?哪些是违规求助? 4758935
关于积分的说明 15017747
捐赠科研通 4801078
什么是DOI,文献DOI怎么找? 2566357
邀请新用户注册赠送积分活动 1524465
关于科研通互助平台的介绍 1483995