A novel entropy-based method to quantify forest canopy structural complexity from multiplatform lidar point clouds

激光雷达 天蓬 遥感 点云 环境科学 激光扫描 树冠 叶面积指数 结构复杂性 森林结构 森林生态学 计算机科学 测距 采样(信号处理) 城市森林 森林资源清查 树(集合论) 森林经营 熵(时间箭头) 城市林业 树形结构
作者
Xiaoqiang Liu,Qin Ma,Xiaoyong Wu,Tianyu Hu,Zhonghua Liu,Lingli Liu,Qinghua Guo,Yanjun Su
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:282: 113280-113280 被引量:47
标识
DOI:10.1016/j.rse.2022.113280
摘要

Forest canopy structural complexity (CSC) describes the three-dimensional (3D) arrangement of canopy elements, and has become an emergent forest attribute mediating forest ecosystem functioning along with species diversity. Light detection and ranging (lidar), especially the emerging near-surface lidar platforms (e.g., terrestrial laser scanning/TLS, backpack laser scanning/BLS, unmanned aerial vehicle laser scanning/ULS), can depict 3D canopy information with high efficiency and accuracy, providing an ideal data source for forest CSC quantification. However, current existing lidar-based CSC quantification indices may share common limitations of getting saturated in structurally complex forest stands and not fully capturing within-canopy structural variations. In this study, we introduced the concept of entropy into forest CSC quantification, and proposed a new forest CSC index, namely canopy entropy (CE). Two major bottlenecks were addressed in the CE calculation procedure, including (1) using a Mann-Kendall (MK) test-based resampling strategy to address the issue of incongruent sampling chances of canopy elements at different locations from different lidar systems, and (2) using a kernel density estimation (KDE)-based method to reduce its dependence on point density. The effectiveness and generality of CE were evaluated by simulating TLS and ULS point clouds from nine forest stands and collecting TLS, BLS, and ULS point clouds from 110 field plots distributed in five forest sites, covering a large variety of forest types and forest CSC conditions. The results showed that CE was an effective forest CSC quantification index that successfully captured CSC variations caused by both tree density and the number of vertical canopy layers. It had significant positive correlations with four widely used CSC indices (i.e., canopy cover, foliage height diversity, canopy top rugosity, and fractal dimension; R2: 0.32 to 0.67), but outperformed them by overcoming their common limitations. CE estimates from multiplatform lidar point clouds agreed well with each other (R2 ≥ 0.70, RMSE ≤0.10), indicating it has generality in cross-platform forest CSC quantification practices. We believe the proposed CE index has great potential to help us unravel the correlations among forest CSC, species diversity, and forest ecosystem functions, and therefore improve our understanding on forest ecosystem processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
北冥有鱼完成签到,获得积分10
1秒前
拂晨柳絮发布了新的文献求助10
1秒前
1秒前
源西瓜完成签到,获得积分10
2秒前
专注的问寒应助铁蛋采纳,获得20
2秒前
迅速冷霜发布了新的文献求助10
2秒前
3秒前
漂亮的乐松完成签到,获得积分20
3秒前
3秒前
个性的雪旋完成签到 ,获得积分10
4秒前
4秒前
4秒前
充电宝应助辛勤太阳采纳,获得10
4秒前
陈大胖完成签到,获得积分20
4秒前
飘逸楷瑞发布了新的文献求助10
5秒前
John完成签到,获得积分10
5秒前
述己完成签到,获得积分10
6秒前
又叙发布了新的文献求助10
6秒前
科研通AI6应助阿佳采纳,获得10
6秒前
6秒前
6秒前
小青椒应助DrSong采纳,获得30
7秒前
7秒前
7秒前
生动不二完成签到,获得积分10
7秒前
7秒前
可爱的函函应助夏日重现采纳,获得10
7秒前
8秒前
王祥瑞完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
9秒前
苗条寻雪发布了新的文献求助10
9秒前
LZ7_发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
啊Q完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625453
求助须知:如何正确求助?哪些是违规求助? 4711271
关于积分的说明 14954468
捐赠科研通 4779371
什么是DOI,文献DOI怎么找? 2553732
邀请新用户注册赠送积分活动 1515665
关于科研通互助平台的介绍 1475853