已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel entropy-based method to quantify forest canopy structural complexity from multiplatform lidar point clouds

激光雷达 天蓬 遥感 点云 环境科学 激光扫描 树冠 叶面积指数 计算机科学 地理 生态学 激光器 人工智能 生物 光学 物理 考古
作者
Xiaoqiang Liu,Qin Ma,Xiaoyong Wu,Tianyu Hu,Zhonghua Liu,Lingli Liu,Qinghua Guo,Yanjun Su
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:282: 113280-113280 被引量:32
标识
DOI:10.1016/j.rse.2022.113280
摘要

Forest canopy structural complexity (CSC) describes the three-dimensional (3D) arrangement of canopy elements, and has become an emergent forest attribute mediating forest ecosystem functioning along with species diversity. Light detection and ranging (lidar), especially the emerging near-surface lidar platforms (e.g., terrestrial laser scanning/TLS, backpack laser scanning/BLS, unmanned aerial vehicle laser scanning/ULS), can depict 3D canopy information with high efficiency and accuracy, providing an ideal data source for forest CSC quantification. However, current existing lidar-based CSC quantification indices may share common limitations of getting saturated in structurally complex forest stands and not fully capturing within-canopy structural variations. In this study, we introduced the concept of entropy into forest CSC quantification, and proposed a new forest CSC index, namely canopy entropy (CE). Two major bottlenecks were addressed in the CE calculation procedure, including (1) using a Mann-Kendall (MK) test-based resampling strategy to address the issue of incongruent sampling chances of canopy elements at different locations from different lidar systems, and (2) using a kernel density estimation (KDE)-based method to reduce its dependence on point density. The effectiveness and generality of CE were evaluated by simulating TLS and ULS point clouds from nine forest stands and collecting TLS, BLS, and ULS point clouds from 110 field plots distributed in five forest sites, covering a large variety of forest types and forest CSC conditions. The results showed that CE was an effective forest CSC quantification index that successfully captured CSC variations caused by both tree density and the number of vertical canopy layers. It had significant positive correlations with four widely used CSC indices (i.e., canopy cover, foliage height diversity, canopy top rugosity, and fractal dimension; R2: 0.32 to 0.67), but outperformed them by overcoming their common limitations. CE estimates from multiplatform lidar point clouds agreed well with each other (R2 ≥ 0.70, RMSE ≤0.10), indicating it has generality in cross-platform forest CSC quantification practices. We believe the proposed CE index has great potential to help us unravel the correlations among forest CSC, species diversity, and forest ecosystem functions, and therefore improve our understanding on forest ecosystem processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
英俊妙柏完成签到,获得积分10
1秒前
努力的淼淼完成签到 ,获得积分10
1秒前
1秒前
2秒前
平常的羊完成签到 ,获得积分10
2秒前
喜悦的小土豆完成签到 ,获得积分10
3秒前
yuwen发布了新的文献求助10
4秒前
啥也不会完成签到 ,获得积分10
5秒前
孤芳自赏IrisKing完成签到 ,获得积分10
6秒前
SS关闭了SS文献求助
6秒前
7秒前
10秒前
10秒前
Brain完成签到 ,获得积分10
10秒前
汤泽琪发布了新的文献求助10
10秒前
zeng完成签到,获得积分10
12秒前
佳丽完成签到,获得积分10
12秒前
顾矜应助一心读书的小王采纳,获得10
13秒前
干净思远完成签到,获得积分10
13秒前
淡淡博发布了新的文献求助10
16秒前
冯尔蓝发布了新的文献求助20
16秒前
细心的梦芝完成签到 ,获得积分10
17秒前
Nicho发布了新的文献求助10
18秒前
顺利墨镜完成签到,获得积分10
19秒前
悟123完成签到 ,获得积分10
20秒前
九日橙完成签到 ,获得积分10
20秒前
lyp完成签到 ,获得积分10
21秒前
21秒前
雪儿完成签到 ,获得积分10
23秒前
笨笨沛文完成签到,获得积分10
23秒前
24秒前
是谁还没睡完成签到 ,获得积分10
25秒前
li完成签到 ,获得积分10
27秒前
YOLO完成签到 ,获得积分10
28秒前
SS驳回了Ava应助
29秒前
乐乱完成签到 ,获得积分10
30秒前
孜然味的拜拜肉完成签到,获得积分10
30秒前
暗号完成签到 ,获得积分10
30秒前
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968154
求助须知:如何正确求助?哪些是违规求助? 3513149
关于积分的说明 11166686
捐赠科研通 3248410
什么是DOI,文献DOI怎么找? 1794206
邀请新用户注册赠送积分活动 874924
科研通“疑难数据库(出版商)”最低求助积分说明 804629