380. UTILITY OF PET/CT FOR LYMPH NODE METASTASIS DETECTION IN PT1 EARLY ESOPHAGEAL SQUAMOUS CELL CARCINOMA

医学 食管鳞状细胞癌 正电子发射断层摄影术 淋巴结 放射科 PET-CT 队列 转移 回顾性队列研究 内科学 核医学 肿瘤科 癌症
作者
Jiaqi Xu,Siyun Lin,Quan‐Lin Li,Ping‐Hong Zhou,Lijie Tan
出处
期刊:Diseases of The Esophagus [Oxford University Press]
卷期号:35 (Supplement_2)
标识
DOI:10.1093/dote/doac051.380
摘要

Abstract Nodal staging for early esophageal squamous cell carcinoma (ESCC) was mandatory to decide therapy strategy. Utility of preoperative Positron Emission Tomography/Computed Tomography (PET/CT) for lymph node metastasis (LNM) detection in early ESCC was evaluated in the study. 186 consecutive patients with pathologically confirmed T1 tumors undergoing preoperative PET/CT at Zhongshan Hospital between 2015 August to 2020 December were retrospectively enrolled. Clinical characteristics and PET/CT results were collected and compared between patients with or without LNM. A PET integrated risk score model for prediction of LNM was established and validated. Survivals were compared between high risk group and low risk group by Log Rank test. 40 out of 186 patients were diagnosed with LNM on PET-CT. PET/CT alone for LNM detection was with a 53.3% sensitivity, 84.65% specificity, and 90.4% negative predictive value. Tumor size >2.5 cm (P = 0.015), tumor depth (P = 0.012), LVI (P < 0.001), differentiation (P = 0.066) and PET LN (+) (P < 0.001) were included in the prediction model for LNM. The AUC of ROC in derivation cohort and validation cohort was 0.860 and 0.846 respectively. High risk group scoring >3 points showed poorer 5-year recurrence free survival (62.6% VS. 74.7%, P = 0.046) and similar overall survival (87.6% VS. 86.9%, P = 0.942) as compared to low risk group. PET/CT for LNM detection in early ESCC was of 53.3% sensitivity and 84.65% specificity. PET integrated risk score model for LNM was of fair property with 0.860 AUC and was predictive of recurrence.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liutaili完成签到,获得积分10
刚刚
PXY完成签到,获得积分10
刚刚
1秒前
DrLiu发布了新的文献求助10
1秒前
WxChen发布了新的文献求助10
1秒前
小马甲应助仄兀采纳,获得10
1秒前
YAN关闭了YAN文献求助
1秒前
杏花饼发布了新的文献求助10
1秒前
筱星完成签到,获得积分10
2秒前
aaaaa发布了新的文献求助10
2秒前
宇文宛菡发布了新的文献求助10
2秒前
jacky完成签到,获得积分10
2秒前
司徒迎曼发布了新的文献求助10
2秒前
2秒前
启航完成签到,获得积分10
2秒前
3秒前
笋蒸鱼完成签到,获得积分10
3秒前
liutaili发布了新的文献求助10
3秒前
3秒前
睡到人间煮饭时完成签到,获得积分10
3秒前
4秒前
清澈水眸完成签到 ,获得积分10
4秒前
圈圈发布了新的文献求助10
4秒前
zhanlonglsj关注了科研通微信公众号
4秒前
缥缈的万天完成签到 ,获得积分10
5秒前
木禾火发布了新的文献求助10
5秒前
5秒前
5秒前
May完成签到,获得积分10
5秒前
爱静静应助忧郁凌波采纳,获得10
6秒前
Maestro_S发布了新的文献求助10
6秒前
乾坤完成签到,获得积分10
6秒前
7秒前
WxChen完成签到,获得积分10
7秒前
椰子发布了新的文献求助10
7秒前
WJ发布了新的文献求助10
8秒前
xhuryts完成签到,获得积分10
8秒前
Ll发布了新的文献求助10
8秒前
徐翩跹完成签到,获得积分10
9秒前
不喝可乐发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740