Machine learning to explore high-entropy alloys with desired enthalpy for room-temperature hydrogen storage: Prediction of density functional theory and experimental data

氢气储存 密度泛函理论 热力学 熵(时间箭头) 实验数据 材料科学 化学 计算机科学 物理 计算化学 数学 统计 有机化学
作者
Shivam Dangwal,Yuji Ikeda,Blazej Grabowski,Kaveh Edalati
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:493: 152606-152606 被引量:3
标识
DOI:10.1016/j.cej.2024.152606
摘要

Safe and high-density storage of hydrogen, for a clean-fuel economy, can be realized by hydride-forming materials, but these materials should be able to store hydrogen at room temperature. Some high-entropy alloys (HEAs) have recently been shown to reversibly store hydrogen at room temperature, but the design of HEAs with appropriate thermodynamics is still challenging. To explore HEAs with appropriate hydride formation enthalpy, this study employs machine learning (ML), in particular, Gaussian process regression (GPR) using four different kernels by training with 420 datum points collected from literature and curated here. The developed ML models are used to predict the formation enthalpy of hydrides for the TixZr2-xCrMnFeNi (x = 0.5, 1.0 and 1.5) system, which is not in the training set. The predicted values by ML are consistent with data from experiments and density functional theory (DFT). The present study thus introduces ML as a rapid and reliable approach for the design of HEAs with hydride formation enthalpies of -25 to -39 kJ/mol for hydrogen storage at room temperature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助zhui采纳,获得10
1秒前
芒果发布了新的文献求助10
1秒前
2秒前
前百年253完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
4秒前
xiaoguai完成签到 ,获得积分10
4秒前
甜蜜晓绿发布了新的文献求助10
6秒前
6秒前
Bruce发布了新的文献求助10
6秒前
7秒前
7秒前
MYhang完成签到,获得积分10
7秒前
wxd发布了新的文献求助10
9秒前
9秒前
哈哈发布了新的文献求助10
10秒前
10秒前
西哈哈发布了新的文献求助10
10秒前
科研通AI5应助lili采纳,获得10
10秒前
郑嘻嘻完成签到,获得积分10
10秒前
10秒前
FEI完成签到,获得积分20
10秒前
12秒前
英姑应助顺利的乐枫采纳,获得10
12秒前
12秒前
12秒前
13秒前
木子加y完成签到 ,获得积分10
14秒前
小蘑菇应助Sally采纳,获得10
14秒前
命运的X号完成签到,获得积分10
14秒前
yangyong发布了新的文献求助10
15秒前
15秒前
图图烤肉完成签到,获得积分10
16秒前
ajiaxi完成签到,获得积分10
16秒前
Bruce完成签到,获得积分10
17秒前
英俊的水彤完成签到 ,获得积分10
17秒前
刘金金完成签到,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794