Multi-Scale Hyperspectral Pansharpening Network Based on Dual Pyramid and Transformer

高光谱成像 人工智能 计算机科学 模式识别(心理学) 图像分辨率 特征提取 空间分析 计算机视觉 全色胶片 特征(语言学) 遥感 地质学 语言学 哲学
作者
Hengyou Wang,Jie Zhang,Lianzhi Huo
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/jstars.2024.3408280
摘要

Hyperspectral pansharpening is to fuse a high spatial resolution panchromatic image (PAN) with a low spatial resolution hyperspectral image (LR-HSI) and generate high resolution hyperspectral image (HR-HSI). However, most existing deep learning-based pansharpening methods have some issues, such as spectral distortion and insufficient spatial texture enhancement. In this work, we propose a novel multi-scale pansharpening network based on the Dual Gaussian- Laplacian Pyramid(DGLP) and Transformer, named MDTP-Net. Specifically, the DGLP module is designed to obtain feature maps at multi-level scales, which effectively learn global spectral information and spatial detail texture information. Then, we design a corresponding Transformer module for each scale feature and utilize the multi-head attention mechanism to guide the extraction of spatial information from LR-HSI and PAN images. This enhances the stability of pansharpening and improves the fusion of spectral with spatial information across feature spaces. In addition, the feature extractors are inserted to connect DGLP and Transformer, making the spatial feature map smoother and richer in channel and texture features. The feature fusion and multi-scale feature connection (MFC) blocks are used to connect multi-scale information together to generate HR-HSI images with more comprehensive spatial and spectral features. Finally, extensive experiments on three classic hyperspectral datasets are conducted. The experimental results demonstrate that our proposed MDTP-Net outperforms conventional methods and existing deep learning-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助科研通管家采纳,获得30
1秒前
方赫然应助科研通管家采纳,获得10
1秒前
子车茗应助科研通管家采纳,获得10
1秒前
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
佰斯特威完成签到,获得积分10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
2秒前
Hello应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
子车茗应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得30
2秒前
iNk应助科研通管家采纳,获得10
2秒前
子车茗应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
彭彭完成签到,获得积分10
7秒前
SPQR发布了新的文献求助10
7秒前
缥缈盼旋完成签到 ,获得积分10
9秒前
10秒前
子车茗应助KX2024采纳,获得30
11秒前
酷炫翠桃发布了新的文献求助10
13秒前
JamesPei应助MRBBN采纳,获得10
14秒前
14秒前
14秒前
激情的含巧完成签到,获得积分10
15秒前
送你一匹马完成签到,获得积分10
16秒前
kkj完成签到,获得积分10
17秒前
purejun发布了新的文献求助10
18秒前
铁柱发布了新的文献求助10
18秒前
科研通AI2S应助大虫子采纳,获得10
19秒前
A12138完成签到 ,获得积分10
20秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242069
求助须知:如何正确求助?哪些是违规求助? 2886396
关于积分的说明 8243205
捐赠科研通 2555019
什么是DOI,文献DOI怎么找? 1383201
科研通“疑难数据库(出版商)”最低求助积分说明 649672
邀请新用户注册赠送积分活动 625417