Multi-Scale Hyperspectral Pansharpening Network Based on Dual Pyramid and Transformer

高光谱成像 人工智能 计算机科学 模式识别(心理学) 图像分辨率 特征提取 空间分析 计算机视觉 全色胶片 特征(语言学) 遥感 地质学 语言学 哲学
作者
Hengyou Wang,Jie Zhang,Lianzhi Huo
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/jstars.2024.3408280
摘要

Hyperspectral pansharpening is to fuse a high spatial resolution panchromatic image (PAN) with a low spatial resolution hyperspectral image (LR-HSI) and generate high resolution hyperspectral image (HR-HSI). However, most existing deep learning-based pansharpening methods have some issues, such as spectral distortion and insufficient spatial texture enhancement. In this work, we propose a novel multi-scale pansharpening network based on the Dual Gaussian- Laplacian Pyramid(DGLP) and Transformer, named MDTP-Net. Specifically, the DGLP module is designed to obtain feature maps at multi-level scales, which effectively learn global spectral information and spatial detail texture information. Then, we design a corresponding Transformer module for each scale feature and utilize the multi-head attention mechanism to guide the extraction of spatial information from LR-HSI and PAN images. This enhances the stability of pansharpening and improves the fusion of spectral with spatial information across feature spaces. In addition, the feature extractors are inserted to connect DGLP and Transformer, making the spatial feature map smoother and richer in channel and texture features. The feature fusion and multi-scale feature connection (MFC) blocks are used to connect multi-scale information together to generate HR-HSI images with more comprehensive spatial and spectral features. Finally, extensive experiments on three classic hyperspectral datasets are conducted. The experimental results demonstrate that our proposed MDTP-Net outperforms conventional methods and existing deep learning-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AoGuo完成签到,获得积分10
1秒前
ruby发布了新的文献求助10
1秒前
3秒前
3秒前
汉堡包应助轻松的山河采纳,获得10
4秒前
小滕发布了新的文献求助10
6秒前
7秒前
ljs完成签到,获得积分10
7秒前
morgenlefay发布了新的文献求助10
8秒前
12秒前
13秒前
13秒前
阿白完成签到 ,获得积分10
17秒前
渣渣XM发布了新的文献求助10
19秒前
19秒前
20秒前
21秒前
无花果应助milewangzi采纳,获得10
23秒前
薛娥完成签到,获得积分10
24秒前
CodeCraft应助渣渣XM采纳,获得10
25秒前
25秒前
mmm发布了新的文献求助10
26秒前
hzwyyds应助感性的梦露采纳,获得20
26秒前
May应助Anoxia采纳,获得50
27秒前
huiliang应助Anoxia采纳,获得50
27秒前
大模型应助可爱的柜子采纳,获得10
27秒前
28秒前
30秒前
bkagyin应助yehuaiyu采纳,获得10
31秒前
壮观惋庭完成签到,获得积分10
31秒前
文静千凡发布了新的文献求助10
32秒前
赘婿应助小滕采纳,获得10
32秒前
天天快乐应助Moshiqi688采纳,获得10
33秒前
嘻嘻哈哈发布了新的文献求助10
33秒前
lewis_xl完成签到,获得积分10
34秒前
34秒前
35秒前
35秒前
yidi01完成签到,获得积分10
37秒前
kuu发布了新的文献求助10
38秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952529
求助须知:如何正确求助?哪些是违规求助? 3497916
关于积分的说明 11089399
捐赠科研通 3228442
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868979
科研通“疑难数据库(出版商)”最低求助积分说明 801309