New Model and Public Online Prediction Platform for Risk Stratification of Vocal Cord Leukoplakia

危险分层 计算机科学 分层(种子) 医学 生物 内科学 休眠 发芽 植物 种子休眠
作者
Zufei Li,J. Lu,Baiwen Zhang,Joshua Si,Hong Zhang,Zhen Zhong,Shuai He,Wenli Cai,Tiancheng Li
出处
期刊:Laryngoscope [Wiley]
卷期号:134 (10): 4329-4337
标识
DOI:10.1002/lary.31555
摘要

Objective To extract texture features from vocal cord leukoplakia (VCL) images and establish a VCL risk stratification prediction model using machine learning (ML) techniques. Methods A total of 462 patients with pathologically confirmed VCL were retrospectively collected and divided into low‐risk and high‐risk groups. We use a 5‐fold cross validation method to ensure the generalization ability of the model built using the included dataset and avoid overfitting. Totally 504 texture features were extracted from each laryngoscope image. After feature selection, 10 ML classifiers were utilized to construct the model. The SHapley Additive exPlanations (SHAP) was employed for feature analysis. To evaluate the model, accuracy, sensitivity, specificity, and the area under the receiver operating characteristic (ROC) curve (AUC) were utilized. In addition, the model was transformed into an online application for public use and further tested in an independent dataset with 52 cases of VCL. Results A total of 12 features were finally selected, random forest (RF) achieved the best model performance, the mean accuracy, sensitivity, specificity, and AUC of the 5‐fold cross validation were 92.2 ± 4.1%, 95.6 ± 4.0%, 85.8 ± 5.8%, and 90.7 ± 4.9%, respectively. The result is much higher than the clinicians (AUC between 63.1% and 75.2%). The SHAP algorithm ranks the importance of 12 texture features to the model. The test results of the additional independent datasets were 92.3%, 95.7%, 90.0%, and 93.3%, respectively. Conclusion The proposed VCL risk stratification prediction model, which has been developed into a public online prediction platform, may be applied in practical clinical work. Level of Evidence 3 Laryngoscope , 134:4329–4337, 2024

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
浮游应助cheng4046采纳,获得10
1秒前
Ava应助RUINNNO采纳,获得10
2秒前
2秒前
3秒前
6秒前
blackddl应助guo采纳,获得10
6秒前
xinran发布了新的文献求助30
6秒前
hongyi66完成签到 ,获得积分10
6秒前
无铭亚空发布了新的文献求助10
8秒前
陈123456完成签到,获得积分20
9秒前
10秒前
11秒前
简单雨安发布了新的文献求助10
11秒前
lr发布了新的文献求助100
12秒前
小二郎应助派123采纳,获得10
12秒前
Yexidong完成签到,获得积分10
13秒前
wxyshare应助xinran采纳,获得10
14秒前
可心儿完成签到,获得积分10
14秒前
彩色碧菡完成签到,获得积分10
14秒前
15秒前
鱼yu完成签到,获得积分10
15秒前
ghhhn完成签到,获得积分10
20秒前
zhou完成签到 ,获得积分10
21秒前
ZZ发布了新的文献求助10
21秒前
一颗竹笋发布了新的文献求助10
22秒前
22秒前
23秒前
23秒前
量子星尘发布了新的文献求助10
23秒前
电量满格中完成签到 ,获得积分10
24秒前
欢呼晓博发布了新的文献求助10
24秒前
Planck完成签到,获得积分10
24秒前
情怀应助刘文静采纳,获得10
24秒前
萧狗子完成签到,获得积分10
24秒前
26秒前
Planck发布了新的文献求助10
28秒前
清水发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679748
求助须知:如何正确求助?哪些是违规求助? 4993976
关于积分的说明 15170786
捐赠科研通 4839617
什么是DOI,文献DOI怎么找? 2593507
邀请新用户注册赠送积分活动 1546573
关于科研通互助平台的介绍 1504700