New Model and Public Online Prediction Platform for Risk Stratification of Vocal Cord Leukoplakia

危险分层 计算机科学 分层(种子) 医学 生物 内科学 休眠 发芽 植物 种子休眠
作者
Zufei Li,J. Lu,Baiwen Zhang,Joshua Si,Hong Zhang,Zhen Zhong,Shuai He,Wenli Cai,Tiancheng Li
出处
期刊:Laryngoscope [Wiley]
卷期号:134 (10): 4329-4337
标识
DOI:10.1002/lary.31555
摘要

Objective To extract texture features from vocal cord leukoplakia (VCL) images and establish a VCL risk stratification prediction model using machine learning (ML) techniques. Methods A total of 462 patients with pathologically confirmed VCL were retrospectively collected and divided into low‐risk and high‐risk groups. We use a 5‐fold cross validation method to ensure the generalization ability of the model built using the included dataset and avoid overfitting. Totally 504 texture features were extracted from each laryngoscope image. After feature selection, 10 ML classifiers were utilized to construct the model. The SHapley Additive exPlanations (SHAP) was employed for feature analysis. To evaluate the model, accuracy, sensitivity, specificity, and the area under the receiver operating characteristic (ROC) curve (AUC) were utilized. In addition, the model was transformed into an online application for public use and further tested in an independent dataset with 52 cases of VCL. Results A total of 12 features were finally selected, random forest (RF) achieved the best model performance, the mean accuracy, sensitivity, specificity, and AUC of the 5‐fold cross validation were 92.2 ± 4.1%, 95.6 ± 4.0%, 85.8 ± 5.8%, and 90.7 ± 4.9%, respectively. The result is much higher than the clinicians (AUC between 63.1% and 75.2%). The SHAP algorithm ranks the importance of 12 texture features to the model. The test results of the additional independent datasets were 92.3%, 95.7%, 90.0%, and 93.3%, respectively. Conclusion The proposed VCL risk stratification prediction model, which has been developed into a public online prediction platform, may be applied in practical clinical work. Level of Evidence 3 Laryngoscope , 134:4329–4337, 2024
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酸奶完成签到,获得积分10
1秒前
万松完成签到,获得积分20
2秒前
小月986完成签到,获得积分10
3秒前
3秒前
橘里散花发布了新的文献求助10
5秒前
哒哒完成签到 ,获得积分10
9秒前
研究牲发布了新的文献求助10
9秒前
真开心完成签到,获得积分10
10秒前
马婷婷发布了新的文献求助10
13秒前
15秒前
15秒前
18秒前
19秒前
苹果向露发布了新的文献求助10
20秒前
24秒前
25秒前
27秒前
27秒前
29秒前
121发布了新的文献求助10
30秒前
李白发布了新的文献求助10
30秒前
雪山飞龙发布了新的文献求助20
33秒前
爆米花应助丁丁采纳,获得10
33秒前
llliii完成签到,获得积分10
35秒前
37秒前
45秒前
ben1702发布了新的文献求助10
45秒前
46秒前
zhizhizhi完成签到 ,获得积分10
48秒前
缓慢的秋莲完成签到 ,获得积分10
52秒前
Patrick完成签到,获得积分10
52秒前
cjj发布了新的文献求助10
53秒前
54秒前
55秒前
丸子完成签到,获得积分10
1分钟前
1分钟前
suzy完成签到,获得积分10
1分钟前
香蕉觅云应助lsq108采纳,获得10
1分钟前
1分钟前
1分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159827
求助须知:如何正确求助?哪些是违规求助? 2810777
关于积分的说明 7889328
捐赠科研通 2469852
什么是DOI,文献DOI怎么找? 1315126
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012