模型预测控制
控制理论(社会学)
二次规划
控制器(灌溉)
计算机科学
弹道
控制工程
凸优化
最优控制
机器人
可靠性(半导体)
理论(学习稳定性)
人工神经网络
非线性系统
控制(管理)
工程类
人工智能
正多边形
数学优化
数学
机器学习
几何学
功率(物理)
物理
量子力学
天文
农学
生物
作者
Mohammad Amin Najafqolian,Khalil Alipour,Roujin Mousavifard,Bahram Tarvirdizadeh
出处
期刊:IEEE Transactions on Industrial Informatics
[Institute of Electrical and Electronics Engineers]
日期:2024-05-20
卷期号:20 (9): 10883-10891
被引量:1
标识
DOI:10.1109/tii.2024.3397353
摘要
This article presents a novel method for quadrotor trajectory control utilizing cascade control and model predictive control (MPC). The proposed approach divides the control problem into a linear position controller, employing linear MPC with convex quadratic programming, and a nonlinear attitude controller, utilizing deep neural network-based MPC. Addressing the computational load challenges associated with online control, the hardware-in-the-loop (HIL) controller is tested to demonstrate its effectiveness in ensuring fast processing and suitability for online control. The stability of the proposed control strategies is analyzed, and simulation results using the HIL system validate the accurate tracking of desired trajectories. The findings highlight the functionality, reliability, and potential of the proposed approach for real-time applications in quadrotor control.
科研通智能强力驱动
Strongly Powered by AbleSci AI