Channel-Spatial Attention Guided CycleGAN for CBCT-Based Synthetic CT Generation to Enable Adaptive Radiotherapy

计算机科学 增采样 人工智能 图像质量 计算机视觉 成像体模 锥束ct 均方误差 霍恩斯菲尔德秤 噪音(视频) 模式识别(心理学) 图像(数学) 数学 核医学 计算机断层摄影术 医学 放射科 统计
作者
Yangchuan Liu,Shimin Liao,Yechen Zhu,Fuxing Deng,Zijian Zhang,Xin Gao,Tingting Cheng
出处
期刊:IEEE transactions on computational imaging 卷期号:10: 818-831 被引量:1
标识
DOI:10.1109/tci.2024.3402372
摘要

Cone-beam computed tomography (CBCT) is the most commonly used 3D imaging modality in image-guided radiotherapy. However, severe artifacts and inaccurate Hounsfield units render CBCT images directly unusable for dose calculations in radiotherapy planning. The deformed pCT (dpCT) image produced by aligning the planning CT (pCT) image with the CBCT image can be viewed as the corrected CBCT image. However, when the interval between pCT and CBCT scans is long, the alignment error increases, which reduces the accuracy of dose calculations based on dpCT images. This study introduces a channel-spatial attention-guided cycle-consistent generative adversarial network (cycleGAN) called TranSE-cycleGAN, which learns mapping from CBCT to dpCT images and generates synthetic CT (sCT) images similar to dpCT images to achieve CBCT image correction. To enhance the network's ability to extract global features that reflect the overall noise and artifact distribution of the image, a TranSE branch, which is composed of a SELayer and an improved window-based transformer, was added parallel to the original residual convolution branch to the cycleGAN generator. To evaluate the proposed network, we collected data from 51 patients with head-and-neck cancer who underwent both pCT and CBCT scans. Among these, 45 were used for network training, and 6 were used for network testing. The results of the comparison experiments with cycleGAN and respath-cycleGAN demonstrate that the proposed TranSE-cycleGAN excels not only in image quality evaluation metrics, including mean absolute error, root mean square error, peak signal-to-noise ratio, and structural similarity but also in the Gamma index pass rate, a metric for dose accuracy evaluation. The superiority of the proposed method indicates its potential value in adaptive radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
漠雨寒灯完成签到,获得积分10
1秒前
1秒前
末末发布了新的文献求助100
2秒前
苏碧萱发布了新的文献求助10
2秒前
2秒前
xxfsx应助锦七采纳,获得20
2秒前
llwxx发布了新的文献求助10
3秒前
半喇柯基完成签到 ,获得积分10
4秒前
5秒前
6秒前
6秒前
nowss发布了新的文献求助10
6秒前
面朝大海发布了新的文献求助10
7秒前
Rocky_Qi完成签到,获得积分10
7秒前
8秒前
8秒前
1234发布了新的文献求助10
9秒前
优秀静珊完成签到,获得积分20
10秒前
rsy完成签到,获得积分10
10秒前
10秒前
科研通AI2S应助cc采纳,获得10
11秒前
Alex发布了新的文献求助200
11秒前
不期而遇完成签到 ,获得积分10
11秒前
一拳一个小欧阳完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
快逃发布了新的文献求助10
12秒前
HJC给HJC的求助进行了留言
12秒前
lyx发布了新的文献求助10
13秒前
13秒前
15秒前
15秒前
淡淡的南风发布了新的文献求助100
15秒前
研友_VZG7GZ应助安详烤鸡采纳,获得10
16秒前
wangguoxi应助小猪猪采纳,获得10
16秒前
科研通AI6应助温柔涵菡采纳,获得10
16秒前
汉堡包应助凤梨爱好者采纳,获得10
16秒前
bbb发布了新的文献求助10
17秒前
张宝发布了新的文献求助10
19秒前
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431499
求助须知:如何正确求助?哪些是违规求助? 4544446
关于积分的说明 14192576
捐赠科研通 4463313
什么是DOI,文献DOI怎么找? 2446779
邀请新用户注册赠送积分活动 1438108
关于科研通互助平台的介绍 1414817