Channel-Spatial Attention Guided CycleGAN for CBCT-Based Synthetic CT Generation to Enable Adaptive Radiotherapy

计算机科学 增采样 人工智能 图像质量 计算机视觉 成像体模 锥束ct 均方误差 霍恩斯菲尔德秤 噪音(视频) 模式识别(心理学) 图像(数学) 数学 核医学 计算机断层摄影术 医学 放射科 统计
作者
Yangchuan Liu,Shimin Liao,Yechen Zhu,Fuxing Deng,Zijian Zhang,Xin Gao,Tingting Cheng
出处
期刊:IEEE transactions on computational imaging 卷期号:10: 818-831 被引量:1
标识
DOI:10.1109/tci.2024.3402372
摘要

Cone-beam computed tomography (CBCT) is the most commonly used 3D imaging modality in image-guided radiotherapy. However, severe artifacts and inaccurate Hounsfield units render CBCT images directly unusable for dose calculations in radiotherapy planning. The deformed pCT (dpCT) image produced by aligning the planning CT (pCT) image with the CBCT image can be viewed as the corrected CBCT image. However, when the interval between pCT and CBCT scans is long, the alignment error increases, which reduces the accuracy of dose calculations based on dpCT images. This study introduces a channel-spatial attention-guided cycle-consistent generative adversarial network (cycleGAN) called TranSE-cycleGAN, which learns mapping from CBCT to dpCT images and generates synthetic CT (sCT) images similar to dpCT images to achieve CBCT image correction. To enhance the network's ability to extract global features that reflect the overall noise and artifact distribution of the image, a TranSE branch, which is composed of a SELayer and an improved window-based transformer, was added parallel to the original residual convolution branch to the cycleGAN generator. To evaluate the proposed network, we collected data from 51 patients with head-and-neck cancer who underwent both pCT and CBCT scans. Among these, 45 were used for network training, and 6 were used for network testing. The results of the comparison experiments with cycleGAN and respath-cycleGAN demonstrate that the proposed TranSE-cycleGAN excels not only in image quality evaluation metrics, including mean absolute error, root mean square error, peak signal-to-noise ratio, and structural similarity but also in the Gamma index pass rate, a metric for dose accuracy evaluation. The superiority of the proposed method indicates its potential value in adaptive radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pw完成签到,获得积分10
刚刚
Jack80发布了新的文献求助200
1秒前
1秒前
2秒前
Ava应助zhou采纳,获得30
2秒前
归去来兮完成签到,获得积分10
4秒前
怡然芷蝶完成签到,获得积分10
6秒前
weing发布了新的文献求助10
7秒前
所所应助zxh采纳,获得10
7秒前
liao_duoduo完成签到,获得积分10
9秒前
云帆完成签到,获得积分10
9秒前
所所应助朝阳满意采纳,获得10
9秒前
科研通AI6应助weing采纳,获得30
11秒前
蓝天发布了新的文献求助10
13秒前
13秒前
王王的狗子完成签到 ,获得积分10
14秒前
知愈完成签到,获得积分10
16秒前
梁jj发布了新的文献求助10
17秒前
cassie完成签到,获得积分10
17秒前
18秒前
19秒前
19秒前
23秒前
朝阳满意发布了新的文献求助10
23秒前
知愈发布了新的文献求助10
24秒前
danggui完成签到,获得积分10
26秒前
幽默的煎饼发布了新的文献求助100
26秒前
Diane发布了新的文献求助10
26秒前
小巧寻桃发布了新的文献求助10
27秒前
dream完成签到 ,获得积分10
27秒前
加油发布了新的文献求助10
27秒前
脑洞疼应助冷酷莫言采纳,获得10
27秒前
29秒前
32秒前
海洋完成签到,获得积分10
32秒前
团子完成签到,获得积分10
33秒前
Lucas应助十一采纳,获得10
33秒前
zhongyinanke发布了新的文献求助50
34秒前
lele发布了新的文献求助10
34秒前
华仔应助小巧寻桃采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560490
求助须知:如何正确求助?哪些是违规求助? 4645747
关于积分的说明 14676028
捐赠科研通 4586936
什么是DOI,文献DOI怎么找? 2516635
邀请新用户注册赠送积分活动 1490182
关于科研通互助平台的介绍 1461055