Channel-Spatial Attention Guided CycleGAN for CBCT-Based Synthetic CT Generation to Enable Adaptive Radiotherapy

计算机科学 增采样 人工智能 图像质量 计算机视觉 成像体模 锥束ct 均方误差 霍恩斯菲尔德秤 噪音(视频) 模式识别(心理学) 图像(数学) 数学 核医学 计算机断层摄影术 医学 放射科 统计
作者
Yangchuan Liu,Shimin Liao,Yechen Zhu,Fuxing Deng,Zijian Zhang,Xin Gao,Tingting Cheng
出处
期刊:IEEE transactions on computational imaging 卷期号:10: 818-831 被引量:1
标识
DOI:10.1109/tci.2024.3402372
摘要

Cone-beam computed tomography (CBCT) is the most commonly used 3D imaging modality in image-guided radiotherapy. However, severe artifacts and inaccurate Hounsfield units render CBCT images directly unusable for dose calculations in radiotherapy planning. The deformed pCT (dpCT) image produced by aligning the planning CT (pCT) image with the CBCT image can be viewed as the corrected CBCT image. However, when the interval between pCT and CBCT scans is long, the alignment error increases, which reduces the accuracy of dose calculations based on dpCT images. This study introduces a channel-spatial attention-guided cycle-consistent generative adversarial network (cycleGAN) called TranSE-cycleGAN, which learns mapping from CBCT to dpCT images and generates synthetic CT (sCT) images similar to dpCT images to achieve CBCT image correction. To enhance the network's ability to extract global features that reflect the overall noise and artifact distribution of the image, a TranSE branch, which is composed of a SELayer and an improved window-based transformer, was added parallel to the original residual convolution branch to the cycleGAN generator. To evaluate the proposed network, we collected data from 51 patients with head-and-neck cancer who underwent both pCT and CBCT scans. Among these, 45 were used for network training, and 6 were used for network testing. The results of the comparison experiments with cycleGAN and respath-cycleGAN demonstrate that the proposed TranSE-cycleGAN excels not only in image quality evaluation metrics, including mean absolute error, root mean square error, peak signal-to-noise ratio, and structural similarity but also in the Gamma index pass rate, a metric for dose accuracy evaluation. The superiority of the proposed method indicates its potential value in adaptive radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风趣的忆南完成签到,获得积分10
1秒前
su发布了新的文献求助10
1秒前
1秒前
2秒前
潘升国完成签到 ,获得积分10
2秒前
jsx完成签到,获得积分10
3秒前
KX2024发布了新的文献求助10
4秒前
舒心安柏完成签到 ,获得积分10
5秒前
5秒前
科研mrxu完成签到,获得积分10
5秒前
onmyway完成签到,获得积分10
7秒前
7秒前
gfsuen完成签到 ,获得积分10
8秒前
Orange应助潇洒的书白采纳,获得10
8秒前
英吉利25发布了新的文献求助10
8秒前
10秒前
量子星尘发布了新的文献求助30
10秒前
迟雾完成签到,获得积分10
11秒前
爱吃喜羊羊完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
Hello应助better采纳,获得10
13秒前
14秒前
14秒前
14秒前
CodeCraft应助Larluli采纳,获得10
14秒前
Jasper应助正丁基锂采纳,获得10
14秒前
15秒前
15秒前
xia完成签到,获得积分10
16秒前
哈哈完成签到,获得积分10
16秒前
16秒前
可爱的函函应助优美紫槐采纳,获得10
16秒前
17秒前
utopia完成签到 ,获得积分10
17秒前
uietoo发布了新的文献求助10
19秒前
Murphy发布了新的文献求助30
19秒前
19秒前
zakai发布了新的文献求助10
21秒前
21秒前
李健应助lasak采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729500
求助须知:如何正确求助?哪些是违规求助? 5318746
关于积分的说明 15316776
捐赠科研通 4876514
什么是DOI,文献DOI怎么找? 2619398
邀请新用户注册赠送积分活动 1568923
关于科研通互助平台的介绍 1525513