已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Channel-Spatial Attention Guided CycleGAN for CBCT-based Synthetic CT Generation to Enable Adaptive Radiotherapy

计算机科学 频道(广播) 人工智能 计算机视觉 算法 电信
作者
Yangchuan Liu,Shimin Liao,Yiqian Zhu,Fuxing Deng,Zijian Zhang,Xin Gao,Tingting Cheng
出处
期刊:IEEE transactions on computational imaging 卷期号:10: 818-831
标识
DOI:10.1109/tci.2024.3402372
摘要

Cone-beam computed tomography (CBCT) is the most commonly used 3D imaging modality in image-guided radiotherapy. However, severe artifacts and inaccurate Hounsfield units render CBCT images directly unusable for dose calculations in radiotherapy planning. The deformed pCT (dpCT) image produced by aligning the planning CT (pCT) image with the CBCT image can be viewed as the corrected CBCT image. However, when the interval between pCT and CBCT scans is long, the alignment error increases, which reduces the accuracy of dose calculations based on dpCT images. This study introduces a channel-spatial attention-guided cycle-consistent generative adversarial network (cycleGAN) called TranSE-cycleGAN, which learns mapping from CBCT to dpCT images and generates synthetic CT (sCT) images similar to dpCT images to achieve CBCT image correction. To enhance the network's ability to extract global features that reflect the overall noise and artifact distribution of the image, a TranSE branch, which is composed of a SELayer and an improved window-based transformer, was added parallel to the original residual convolution branch to the cycleGAN generator. To evaluate the proposed network, we collected data from 51 patients with head-and-neck cancer who underwent both pCT and CBCT scans. Among these, 45 were used for network training, and 6 were used for network testing. The results of the comparison experiments with cycleGAN and respath-cycleGAN demonstrate that the proposed TranSE-cycleGAN excels not only in image quality evaluation metrics, including mean absolute error, root mean square error, peak signal-to-noise ratio, and structural similarity but also in the Gamma index pass rate, a metric for dose accuracy evaluation. The superiority of the proposed method indicates its potential value in adaptive radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花样年华发布了新的文献求助10
1秒前
寒冷志泽完成签到 ,获得积分10
1秒前
Owen应助明芬采纳,获得10
3秒前
SciGPT应助阳光沛凝采纳,获得10
4秒前
CipherSage应助文艺南松采纳,获得10
4秒前
5秒前
幼儿园老大完成签到,获得积分10
5秒前
ljy阿完成签到 ,获得积分10
6秒前
MU发布了新的文献求助10
9秒前
一一完成签到 ,获得积分10
9秒前
迦鳞完成签到 ,获得积分10
11秒前
向杨双完成签到 ,获得积分10
14秒前
seeyou完成签到 ,获得积分10
15秒前
暴躁的元灵完成签到 ,获得积分10
15秒前
15秒前
16秒前
17秒前
123完成签到 ,获得积分10
18秒前
20秒前
Lamis完成签到 ,获得积分10
21秒前
biubiuxue完成签到,获得积分10
21秒前
科目三应助HEANZ采纳,获得10
21秒前
24秒前
25秒前
minya完成签到,获得积分10
27秒前
CipherSage应助甜蜜的小甜瓜采纳,获得10
28秒前
Bystander完成签到 ,获得积分10
29秒前
32秒前
32秒前
今天没烦恼完成签到 ,获得积分10
37秒前
37秒前
文艺南松发布了新的文献求助10
39秒前
局外人发布了新的文献求助30
39秒前
HEANZ发布了新的文献求助10
39秒前
43秒前
ccc完成签到,获得积分10
44秒前
文艺南松完成签到,获得积分20
46秒前
49秒前
不知道叫什么完成签到 ,获得积分10
50秒前
51秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Formulation of a two-level electronic security and protection system for malls 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Preexisting Skin-Resident CD8 and γδ T-cell Circuits Mediate Immune Response in Merkel Cell Carcinoma and Predict Immunotherapy Efficacy 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3335166
求助须知:如何正确求助?哪些是违规求助? 2964351
关于积分的说明 8613422
捐赠科研通 2643187
什么是DOI,文献DOI怎么找? 1447252
科研通“疑难数据库(出版商)”最低求助积分说明 670587
邀请新用户注册赠送积分活动 658921